Skip to main content

Evolving Role of Calcium Density in Coronary Artery Calcium Scoring and Atherosclerotic Cardiovascular Disease Risk

State-of-the-Art Paper

J Am Coll Cardiol ImgEpublished DOI: 10.1016/j.jcmg.2022.02.026
Topic(s):
Sections

Central Illustration

Abstract

Coronary artery calcium (CAC) is a specific marker of coronary atherosclerosis that can be used to measure calcified subclinical atherosclerotic burden. The Agatston method is the most widely used scoring algorithm for quantifying CAC and is expressed as the product of total calcium area and a quantized peak calcium density weighting factor defined by the calcification attenuation in HU on noncontrast computed tomography. Calcium density has emerged as an important area of inquiry because the Agatston score is upweighted based on the assumption that peak calcium density and atherosclerotic cardiovascular disease (ASCVD) risk are positively correlated. However, recent evidence demonstrates that calcium density is inversely associated with lesion vulnerability and ASCVD risk in population-based cohorts when accounting for age and plaque area. Here, we review calcium density by focusing on 3 main areas: 1) CAC scan acquisition parameters; 2) pathophysiology of calcified plaques; and 3) epidemiologic evidence relating calcium density to ASCVD outcomes. Through this process, we hope to provide further insight into the evolution of CAC scoring on noncontrast computed tomography.

Highlights

Coronary artery calcium is expressed as the product of calcium area and a quantized peak calcium density weighting factor.

Calcium density strongly and positively associates with age, which may correspond with the biological framework and natural progression of atherosclerosis.

Calcium density is inversely associated with lesion vulnerability and atherosclerotic cardiovascular disease risk in population-based cohorts when accounting for age and plaque area.

The presence of a calcium density >1,000 HU (1K plaque) is associated with a lower risk of acute coronary syndrome independent of traditional risk factors.

Mean calcium density performs better than peak calcium density factor when combined with plaque area for atherosclerotic cardiovascular disease mortality prediction among persons with limited coronary artery calcium burden.

  • 1. Demer L.L., Tintut Y. "Vascular calcification: pathobiology of a multifaceted disease". Circulation 2008;117:22: 2938-2948.

    CrossrefMedlineGoogle Scholar
  • 2. Arnett D.K., Blumenthal R.S., Albert M.A., et al. "2019 ACC/AHA guideline on the primary prevention of cardiovascular disease". J Am Coll Cardiol 2019;74:e177-e232.

    View ArticleGoogle Scholar
  • 3. Agatston A.S., Janowitz W.R., Hildner F.J., Zusmer N.R., Viamonte M., Detrano R. "Quantification of coronary artery calcium using ultrafast computed tomography". J Am Coll Cardiol 1990;15:827-832.

    View ArticleGoogle Scholar
  • 4. Criqui M.H., Knox J.B., Denenberg J.O., et al. "Coronary artery calcium volume and density: potential interactions and overall predictive value: the Multi-Ethnic Study of Atherosclerosis". J Am Coll Cardiol Img 2017;10:845-854.

    View ArticleGoogle Scholar
  • 5. Tota-Maharaj R., Blaha M.J., Rivera J.J., et al. "Differences in coronary plaque composition with aging measured by coronary computed tomography angiography". Int J Cardiol 2012;158.

    CrossrefMedlineGoogle Scholar
  • 6. Allison M.A., Criqui M.H., Wright C.M. "Patterns and risk factors for systemic calcified atherosclerosis". Arterioscler Thromb Vasc Biol 2004.

    CrossrefMedlineGoogle Scholar
  • 7. McClelland R.L., Chung H., Detrano R., Post W., Kronmal R.A. "Distribution of coronary artery calcium by race, gender, and age: results from the Multi-Ethnic Study of Atherosclerosis (MESA)". Circulation 2006;113:30-37.

    CrossrefMedlineGoogle Scholar
  • 8. Hoffmann U., Massaro J.M., Fox C.S., Manders E., O’Donnell C.J. "Defining normal distributions of coronary artery calcium in women and men (from the Framingham Heart Study)". Am J Cardiol 2008;102:9: 1136-1141.

    CrossrefMedlineGoogle Scholar
  • 9. Thomas I.C., Shiau B., Denenberg J.O., et al. "Association of cardiovascular disease risk factors with coronary artery calcium volume versus density". Heart 2018;104:2: 135-143.

    CrossrefMedlineGoogle Scholar
  • 10. Bild D.E., Detrano R., Peterson D., et al. "Ethnic differences in coronary calcification: the Multi-Ethnic Study of Atherosclerosis (MESA)". Circulation 2005;111:10: 1313-1320.

    CrossrefMedlineGoogle Scholar
  • 11. Al Rifai M., Kanaya A.M., Kandula N.R., et al. "Distribution of calcium volume, density, number, and type of coronary vessel with calcified plaque in South Asians in the US and other race/ethnic groups: the MASALA and MESA studies". Atherosclerosis 2021;317:16-21.

    CrossrefMedlineGoogle Scholar
  • 12. Dzaye O., Razavi A.C., Dardari Z.A., et al. "Modeling the recommended age for initiating coronary artery calcium testing among at-risk young adults". J Am Coll Cardiol 2021;78:16: 1573-1583.

    View ArticleGoogle Scholar
  • 13. Shaw L.J., Min J.K., Nasir K., et al. "Sex differences in calcified plaque and long-term cardiovascular mortality: observations from the CAC Consortium". Eur Heart J 2018;39:3727-3735.

    CrossrefMedlineGoogle Scholar
  • 14. Qureshi W., Blaha M.J., Nasir K., Al-Mallah M.H. "Gender differences in coronary plaque composition and burden detected in symptomatic patients referred for coronary computed tomographic angiography". Int J Cardiovasc Imaging 2013;29:2: 463-469.

    CrossrefMedlineGoogle Scholar
  • 15. Blaha M.J., Nasir K., Rivera J.J., et al. "Gender differences in coronary plaque composition by coronary computed tomography angiography". Coron Artery Dis 2009;20:8: 506-512.

    CrossrefMedlineGoogle Scholar
  • 16. Nasir K., Gopal A., Blankstein R., et al. "Noninvasive assessment of gender differences in coronary plaque composition with multidetector computed tomographic angiography". Am J Cardiol 2010;105:4: 453-458.

    CrossrefMedlineGoogle Scholar
  • 17. Christian R.C., Harrington S., Edwards W.D., Oberg A.L., Fitzpatrick L.A. "Estrogen status correlates with the calcium content of coronary atherosclerotic plaques in women". J Clin Endocrinol Metab 2002;87:3: 1062-1067.

    CrossrefMedlineGoogle Scholar
  • 18. Shaw L.J., Bugiardini R., Merz C.N.B. "Women and ischemic heart disease. Evolving knowledge". J Am Coll Cardiol 2009;54:17: 1561-1575.

    View ArticleGoogle Scholar
  • 19. Bairey Merz C.N., Shaw L.J., Reis S.E., et al. "Insights from the NHLBI-sponsored Women’s Ischemia Syndrome Evaluation (WISE) study. Part II: gender differences in presentation, diagnosis, and outcome with regard to gender-based pathophysiology of atherosclerosis and macrovascular and microvascular cor". J Am Coll Cardiol 2006;47:3S: S21-S29.

    View ArticleGoogle Scholar
  • 20. Sharma K., Al Rifai M., Ahmed H.M., et al. "Usefulness of coronary artery calcium to predict heart failure with preserved ejection fraction in men versus women (from the Multi-Ethnic Study of Atherosclerosis)". Am J Cardiol 2017;120:10: 1847-1853.

    CrossrefMedlineGoogle Scholar
  • 21. Taqueti V.R., Solomon S.D., Shah A.M., et al. "Coronary microvascular dysfunction and future risk of heart failure with preserved ejection fraction". Eur Heart J 2018;39:10: 840-849.

    CrossrefMedlineGoogle Scholar
  • 22. Blaha M.J., Mortensen M.B., Kianoush S., Tota-Maharaj R., Cainzos-Achirica M. "Coronary artery calcium scoring: is it time for a change in methodology?"J Am Coll Cardiol Img 2017;10:8: 923-937.

    View ArticleGoogle Scholar
  • 23. Hou K.Y., Tsujioka K., Yang C.C. "Optimization of HU threshold for coronary artery calcium scans reconstructed at 0.5-mm slice thickness using iterative reconstruction". J Appl Clin Med Phys 2020;21:2: 111-120.

    CrossrefMedlineGoogle Scholar
  • 24. Gräni C., Vontobel J., Benz D.C., et al. "Ultra-low-dose coronary artery calcium scoring using novel scoring thresholds for low tube voltage protocols—a pilot study". Eur Heart J Cardiovasc Imaging 2018;19:12: 1362-1371.

    CrossrefMedlineGoogle Scholar
  • 25. Van Rosendael A.R., Narula J., Lin F.Y., et al. "Association of high-density calcified 1K plaque with risk of acute coronary syndrome". JAMA Cardiol 2020;5:3: 282-290.

    CrossrefMedlineGoogle Scholar
  • 26. Dzaye O., Razavi A.C., Dardari Z.A., et al. "Mean versus peak coronary calcium density on non-contrast computed tomography: implications for calcium scoring and mortality risk prediction". J Am Coll Cardiol Img 2021;15:3: 489-500.

    View ArticleGoogle Scholar
  • 27. Criqui M.H., Denenberg J.O., Ix J.H., et al. "Calcium density of coronary artery plaque and risk of incident cardiovascular events". JAMA 2014;311:3: 271-278.

    CrossrefMedlineGoogle Scholar
  • 28. Foldyna B., Eslami P., Scholtz J.E., et al. "Density and morphology of coronary artery calcium for the prediction of cardiovascular events: insights from the Framingham Heart Study". Eur Radiol 2019;29:11: 6140-6148.

    CrossrefMedlineGoogle Scholar
  • 29. Osei A.D., Mirbolouk M., Berman D., et al. "Prognostic value of coronary artery calcium score, area, and density among individuals on statin therapy vs. non-users: the coronary artery calcium consortium". Atherosclerosis 2021;316:79-83.

    CrossrefMedlineGoogle Scholar
  • 30. Huang Y.L., Lin H.S., Wu C.C., et al. "CT attenuation features of individual calcified coronary plaque: differences among asymptomatic, stable angina pectoris, and acute coronary syndrome groups". PLoS One 2015;10:6: e0131254.

    CrossrefMedlineGoogle Scholar
  • 31. Ehara S., Kobayashi Y., Yoshiyama M., et al. "Spotty calcification typifies the culprit plaque in patients with acute myocardial infarction: an intravascular ultrasound study". Circulation 2004;110:22: 3424-3429.

    CrossrefMedlineGoogle Scholar
  • 32. Nakamura M., Nishikawa H., Mukai S., et al. "Impact of coronary artery remodeling on clinical presentation of coronary artery disease: An intravascular ultrasound study". J Am Coll Cardiol 2001;37:1: 63-69.

    View ArticleGoogle Scholar
  • 33. Motoyama S., Kondo T., Sarai M., et al. "Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes". J Am Coll Cardiol 2007;50:4: 319-326.

    View ArticleGoogle Scholar
  • 34. Pugliese L., Spiritigliozzi L., Di Tosto F., et al. "Association of plaque calcification pattern and attenuation with instability features and coronary stenosis and calcification grade". Atherosclerosis 2020;311:150-157.

    CrossrefMedlineGoogle Scholar
  • 35. Hou Z.H., Lu B., Gao Y., et al. "Prognostic value of coronary CT angiography and calcium score for major adverse cardiac events in outpatients". J Am Coll Cardiol Img 2012;5:10: 990-999.

    View ArticleGoogle Scholar
  • 36. Shemesh J., Apter S., Itzchak Y., Motro M. "Coronary calcification compared in patients with acute versus in those with chronic coronary events by using dual-sector spiral CT". Radiology 2003;226:2: 483-488.

    CrossrefMedlineGoogle Scholar
  • 37. Motoyama S., Kondo T., Anno H., et al. "Atherosclerotic plaque characterization by 0.5-mm-slice multislice computed tomographic imaging". Circ J 2007;71:3: 363-366.

    CrossrefMedlineGoogle Scholar
  • 38. Hoffmann U., Moselewski F., Nieman K., et al. "Noninvasive assessment of plaque morphology and composition in culprit and stable lesions in acute coronary syndrome and stable lesions in stable angina by multidetector computed tomography". J Am Coll Cardiol 2006;47:8: 1655-1662.

    View ArticleGoogle Scholar
  • 39. Inoue K., Motoyama S., Sarai M., et al. "Serial coronary CT angiography-verified changes in plaque characteristics as an end point: evaluation of effect of statin intervention". J Am Coll Cardiol Img 2010;3:7: 691-698.

    View ArticleGoogle Scholar
  • 40. Saremi A., Bahn G., Reaven P.D. "Progression of vascular calcification is increased with statin use in the Veterans Affairs Diabetes Trial (VADT)". Diabetes Care 2012;35:11: 2390-2392.

    CrossrefMedlineGoogle Scholar
  • 41. Kini A.S., Baber U., Kovacic J.C., et al. "Changes in plaque lipid content after short-term intensive versus standard statin therapy: the YELLOW trial (Reduction in Yellow Plaque by Aggressive Lipid-Lowering Therapy)". J Am Coll Cardiol 2013;62:1: 21-29.

    View ArticleGoogle Scholar
  • 42. Kim U., Leipsic J.A., Sellers S.L., et al. "Natural history of diabetic coronary atherosclerosis by quantitative measurement of serial coronary computed tomographic angiography: results of the PARADIGM Study". J Am Coll Cardiol Img 2018.

    Google Scholar
  • 43. Lee S.E., Chang H.J., Sung J.M., et al. "Effects of statins on coronary atherosclerotic plaques: the PARADIGM Study". J Am Coll Cardiol Img 2018;11:10: 1461-1471.

    View ArticleGoogle Scholar
  • 44. Lee S.E., Sung J.M., Andreini D., et al. "Differential association between the progression of coronary artery calcium score and coronary plaque volume progression according to statins: the Progression of AtheRosclerotic PlAque DetermIned by Computed TomoGraphic Angiography Imaging (PARADIGM) study". Eur Heart J Cardiovasc Imaging 2019;20:11: 1307-1314.

    MedlineGoogle Scholar
  • 45. Van Rosendael A.R., Van Den Hoogen I.J., Gianni U., et al. "Association of statin treatment with progression of coronary atherosclerotic plaque composition". JAMA Cardiol 2021;6:11: 1257-1266.

    CrossrefMedlineGoogle Scholar
  • 46. Healy A., Berus J.M., Christensen J.L., et al. "Statins disrupt macrophage rac1 regulation leading to increased atherosclerotic plaque calcification". Arterioscler Thromb Vasc Biol 2020;40:3: 714-732.

    CrossrefMedlineGoogle Scholar
  • 47. Shaw L.J., Narula J., Chandrashekhar Y. "The never-ending story on coronary calcium: is it predictive, punitive, or protective?"J Am Coll Cardiol 2015;65:13: 1283-1285.

    View ArticleGoogle Scholar
  • 48. Dykun I., Lehmann N., Kälsch H., et al. "Statin medication enhances progression of coronary artery calcification: the Heinz Nixdorf Recall Study". J Am Coll Cardiol 2016;68:19: 2123-2125.

    View ArticleGoogle Scholar
  • 49. Matsumoto S., Ibrahim R., Grégoire J.C., et al. "Effect of treatment with 5-lipoxygenase inhibitor VIA-2291 (atreleuton) on coronary plaque progression: a serial CT angiography study". Clin Cardiol 2017;40:4: 210-215.

    CrossrefMedlineGoogle Scholar
  • 50. Budoff M.J., Bhatt D.L., Kinninger A., et al. "Effect of icosapent ethyl on progression of coronary atherosclerosis in patients with elevated triglycerides on statin therapy: final results of the EVAPORATE trial". Eur Heart J 2020;41:40: 3925-3932.

    CrossrefMedlineGoogle Scholar
  • 51. Dzaye O., Dardari Z.A., Cainzos-Achirica M., et al. "Warranty period of a calcium score of zero: comprehensive analysis from the Multiethnic Study of Atherosclerosis". J Am Coll Cardiol Img 2020;14:5: 990-1002.

    View ArticleGoogle Scholar
  • 52. Razavi A.C., Kelly T.N., Budoff M.J., et al. "Atherosclerotic cardiovascular disease events among statin eligible individuals with and without long-term healthy arterial aging". Atherosclerosis 2021;326:56-62.

    CrossrefMedlineGoogle Scholar
  • 53. Radford N.B., DeFina L.F., Barlow C.E., et al. "Progression of CAC score and risk of incident CVD". J Am Coll Cardiol Img 2016;9:12: 1420-1429.

    View ArticleGoogle Scholar
  • 54. Mukai H., Dai L., Chen Z., et al. "Inverse J-shaped relation between coronary arterial calcium density and mortality in advanced chronic kidney disease". Nephrol Dial Transplant 2020;35:7: 1202-1211.

    CrossrefMedlineGoogle Scholar
  • 55. Bellasi A., Ferramosca E., Ratti C., Block G., Raggi P. "The density of calcified plaques and the volume of calcium predict mortality in hemodialysis patients". Atherosclerosis 2016;250:166-171.

    CrossrefMedlineGoogle Scholar
  • 56. Virmani R., Burke A.P., Farb A., Kolodgie F.D. "Pathology of the vulnerable plaque". J Am Coll Cardiol 2006;47:8S: C13-C18.

    View ArticleGoogle Scholar
  • 57. Zaromytidou M., Antoniadis A.P., Siasos G., et al. "Heterogeneity of coronary plaque morphology and natural history: current understanding and clinical significance". Curr Atheroscler Rep 2016;18:12: 1-9.

    CrossrefMedlineGoogle Scholar
  • 58. Puchner S.B., Mayrhofer T., Park J., et al. "Differences in the association of total versus local coronary artery calcium with acute coronary syndrome and culprit lesions in patients with acute chest pain: the coronary calcium paradox". Atherosclerosis 2018;274:251-257.

    CrossrefMedlineGoogle Scholar
  • 59. Eslami P., Parmar C., Foldyna B., et al. "Radiomics of coronary artery calcium in the Framingham Heart Study". Radiol Cardiothorac Imaging 2020;2:1: e190119.

    CrossrefMedlineGoogle Scholar
  • 60. Moselewski F., O’Donnell C.J., Achenbach S., et al. "Calcium concentration of individual coronary calcified plaques as measured by multidetector row computed tomography". Circulation 2005;111:24: 3236-3241.

    CrossrefMedlineGoogle Scholar
  • 61. Radford N.B., DeFina L.F., Leonard D., et al. "Cardiorespiratory fitness, coronary artery calcium, and cardiovascular disease events in a cohort of generally healthy middle-age men: results from the Cooper Center Longitudinal Study". Circulation 2018;137:18: 1888-1895.

    CrossrefMedlineGoogle Scholar
  • 62. Defina L.F., Radford N.B., Barlow C.E., et al. "Association of all-cause and cardiovascular mortality with high levels of physical activity and concurrent coronary artery calcification". JAMA Cardiol 2019;4:2: 174-181.

    CrossrefMedlineGoogle Scholar
  • 63. Merghani A., Maestrini V., Rosmini S., et al. "Prevalence of subclinical coronary artery disease in masters endurance athletes with a low atherosclerotic risk profile". Circulation 2017;136:2: 126-137.

    CrossrefMedlineGoogle Scholar
  • 64. Aengevaeren V.L., Mosterd A., Braber T.L., et al. "Relationship between lifelong exercise volume and coronary atherosclerosis in athletes". Circulation 2017;136:2: 138-148.

    CrossrefMedlineGoogle Scholar
  • 65. Craiem D., Casciaro M., Pascaner A., et al. "Association of calcium density in the thoracic aorta with risk factors and clinical events". Eur Radiol 2020;30:7: 3960-3967.

    CrossrefMedlineGoogle Scholar
  • 66. Thomas I.C., McClelland R.L., Michos E.D., et al. "Density of calcium in the ascending thoracic aorta and risk of incident cardiovascular disease events". Atherosclerosis 2017;265:190-196.

    CrossrefMedlineGoogle Scholar
  • 67. Thomas I.C., McClelland R.L., Allison M.A., et al. "Progression of calcium density in the ascending thoracic aorta is inversely associated with incident cardiovascular disease events". Eur Heart J Cardiovasc Imaging 2018;19:12: 1343-1350.

    CrossrefMedlineGoogle Scholar
  • 68. Budoff M.J., Nasir K., Katz R., et al. "Thoracic aortic calcification and coronary heart disease events: the Multi-Ethnic Study of Atherosclerosis (MESA)". Atherosclerosis 2011;215:1: 196-202.

    CrossrefMedlineGoogle Scholar
  • 69. Urabe Y., Yamamoto H., Kitagawa T., et al. "Identifying small coronary calcification in non-contrast 0.5-mm slice reconstruction to diagnose coronary artery disease in patients with a conventional zero coronary artery calcium score". J Atheroscler Thromb 2016;23:12: 1324-1333.

    CrossrefMedlineGoogle Scholar
  • 70. Gillies R.J., Kinahan P.E., Hricak H. "Radiomics: images are more than pictures, they are data". Radiology 2016;278:2: 563-577.

    CrossrefMedlineGoogle Scholar
  • 71. Berenguer R., Del Rosario Pastor-Juan M., Canales-Vázquez J., et al. "Radiomics of CT features may be nonreproducible and redundant: influence of CT acquisition parameters". Radiology 2018;288:2: 407-415.

    CrossrefMedlineGoogle Scholar
  • 72. Meyer M., Ronald J., Vernuccio F., et al. "Reproducibility of CT radiomic features within the same patient: influence of radiation dose and CT reconstruction settings". Radiology 2019;293:3: 583-591.

    CrossrefMedlineGoogle Scholar
  • 73. Shemesh J., Tenenbaum A., Kopecky K.K., et al. "Coronary calcium measurements by double helical computed tomography: using the average instead of peak density algorithm improves reproducibility". Invest Radiol 1997;32:9: 503-506.

    CrossrefMedlineGoogle Scholar
  • 74. Lo-Kioeng-Shioe M.S., Vavere A.L., Arbab-Zadeh A., et al. "Coronary calcium characteristics as predictors of major adverse cardiac events in symptomatic patients: insights from the CORE320 Multinational Study". J Am Heart Assoc 2019;8:6: e007201.

    CrossrefMedlineGoogle Scholar