Skip to main content
Skip main navigationClose Drawer MenuOpen Drawer Menu

Systemic Delivery of Extracellular Vesicles Attenuates Atrial Fibrillation in Heart Failure With Preserved Ejection FractionGET ACCESS

Atrial Fibrillation - Biological Therapies

J Am Coll Cardiol EP, 9 (2) 147–158
Sections

Central Illustration

Abstract

Background

Atrial fibrillation (AF) is a common comorbidity in heart failure with preserved ejection fraction (HFpEF) patients. To date, treatments for HFpEF-related AF have been limited to anti-arrhythmic drugs and ablation. Here we examined the effects of immortalized cardiosphere-derived extracellular vesicles (imCDCevs) in rats with HFpEF.

Objectives

This study sought to investigate the mechanisms of AF in HFpEF and probe the potential therapeutic efficacy of imCDCevs in HFpEF-related AF.

Methods

Dahl salt-sensitive rats were fed a high-salt diet for 7 weeks to induce HFpEF and randomized to receive imCDCevs (n = 18) or vehicle intravenously (n = 14). Rats fed a normal-salt diet were used as control animals (n = 26). A comprehensive characterization of atrial remodeling was conducted using functional and molecular techniques.

Results

HFpEF-verified animals showed significantly higher AF inducibility (84%) compared with control animals (15%). These changes were associated with prolonged action potential duration, slowed conduction velocity (connexin 43 lateralization), and fibrotic remodeling in the left atrium of HFpEF compared with control animals. ImCDCevs reversed adverse electrical remodeling (restoration of action potential duration to control levels and reorganization of connexin 43) and reduced AF inducibility (33%). In addition, fibrosis, inflammation, and oxidative stress, which are major pathological AF drivers, were markedly attenuated in imCDCevs-treated animals. Importantly, these effects occurred without changes in blood pressure and diastolic function.

Conclusions

Thus, imCDCevs attenuated adverse remodeling, and prevented AF in a rat model of HFpEF.

References

  • 1. Owan T.E., Hodge D.O., Herges R.M., Jacobsen S.J., Roger V.L., Redfield M.M. "Trends in prevalence and outcome of heart failure with preserved ejection fraction". N Engl J Med . 2006;355:251-259.

    CrossrefMedlineGoogle Scholar
  • 2. Dunlay S.M., Roger V.L., Redfield M.M. "Epidemiology of heart failure with preserved ejection fraction". Nat Rev Cardiol . 2017;14:591-602.

    CrossrefMedlineGoogle Scholar
  • 3. Cho J.H., Leong D., Cuk N., et al. "Delayed repolarization and ventricular tachycardia in patients with heart failure and preserved ejection fraction". PLoS One . 2021;16:e0254641.

    CrossrefGoogle Scholar
  • 4. Zile M.R., Gaasch W.H., Anand I.S., et al. "Mode of death in patients with heart failure and a preserved ejection fraction: results from the Irbesartan in Heart Failure With Preserved Ejection Fraction Study (I-Preserve) trial". Circulation . 2010;121:1393-1405.

    CrossrefMedlineGoogle Scholar
  • 5. Zakeri R., Chamberlain A.M., Roger V.L., Redfield M.M. "Temporal relationship and prognostic significance of atrial fibrillation in heart failure patients with preserved ejection fraction: a community-based study". Circulation . 2013;128:1085-1093.

    CrossrefMedlineGoogle Scholar
  • 6. Pfeffer M.A., Shah A.M., Borlaug B.A. "Heart failure with preserved ejection fraction in perspective". Circ Res . 2019;124:1598-1617.

    CrossrefMedlineGoogle Scholar
  • 7. Marbán E. "The secret life of exosomes: what bees can teach us about next-generation therapeutics". J Am Coll Cardiol . 2018;71:193-200.

    View ArticleGoogle Scholar
  • 8. McDonald C.M., Marbán E., Hendrix S., et al. "Repeated intravenous cardiosphere-derived cell therapy in late-stage Duchenne muscular dystrophy (HOPE-2): a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial". Lancet . 2022;399:1049-1058.

    CrossrefMedlineGoogle Scholar
  • 9. Gallet R., Dawkins J., Valle J., et al. "Exosomes secreted by cardiosphere-derived cells reduce scarring, attenuate adverse remodelling, and improve function in acute and chronic porcine myocardial infarction". Eur. Heart J . 2017;38:201-211.

    MedlineGoogle Scholar
  • 10. Dawkins J.F., Ehdaie A., Rogers R., et al. "Biological substrate modification suppresses ventricular arrhythmias in a porcine model of chronic ischaemic cardiomyopathy". Eur Heart J . 2022;43:2139-2156.

    CrossrefMedlineGoogle Scholar
  • 11. Ibrahim A.G.E., Li C., Rogers R., et al. "Augmenting canonical Wnt signalling in therapeutically inert cells converts them into therapeutically potent exosome factories". Nat Biomed Eng . 2019;3:695-705.

    CrossrefMedlineGoogle Scholar
  • 12. Lin Y.-N., Mesquita T., Sanchez L., et al. "Extracellular vesicles from immortalized cardiosphere-derived cells attenuate arrhythmogenic cardiomyopathy in desmoglein-2 mutant mice". Eur Heart J . 2021;42:3558-3571.

    CrossrefMedlineGoogle Scholar
  • 13. Cho J.H., Zhang R., Kilfoil P.J., et al. "Delayed repolarization underlies ventricular arrhythmias in rats with heart failure and preserved ejection fraction". Circulation . 2017;136:2037-2050.

    CrossrefMedlineGoogle Scholar
  • 14. Cho J.H., Zhang R., Aynaszyan S., et al. "Ventricular arrhythmias underlie sudden death in rats with heart failure and preserved ejection fraction". Circ Arrhythm Electrophysiol . 2018;11:e006452.

    CrossrefMedlineGoogle Scholar
  • 15. Cho J.H., Kilfoil P.J., Zhang R., et al. "Reverse electrical remodeling in rats with heart failure and preserved ejection fraction". JCI Insight . 2018;3:e121123.

    CrossrefGoogle Scholar
  • 16. Mesquita T., Zhang R., Cho J.H., et al. "Mechanisms of sinoatrial node dysfunction in heart failure with preserved ejection fraction". Circulation . 2022;145:45-60.

    CrossrefMedlineGoogle Scholar
  • 17. de Couto G., Mesquita T., Wu X., et al. "Cell therapy attenuates endothelial dysfunction in hypertensive rats with heart failure and preserved ejection fraction". Am J Physiol Heart Circ Physiol . 2022;323:5: H892-H903. https://doi.org/10.1152/ajpheart.00287.2022.

    CrossrefMedlineGoogle Scholar
  • 18. Mesquita T.R.R., Zhang R., de Couto G., et al. "Mechanisms of atrial fibrillation in aged rats with heart failure with preserved ejection fraction". Heart Rhythm . 2020;17:1025-1033.

    CrossrefMedlineGoogle Scholar
  • 19. Moreira L.M., Takawale A., Hulsurkar M., et al. "Paracrine signalling by cardiac calcitonin controls atrial fibrogenesis and arrhythmia". Nature . 2020;587:460-465.

    CrossrefMedlineGoogle Scholar
  • 20. Yao C., Veleva T., Scott L., et al. "Enhanced cardiomyocyte NLRP3 inflammasome signaling promotes atrial fibrillation". Circulation . 2018;138:2227-2242.

    CrossrefMedlineGoogle Scholar
  • 21. Hiram R., Naud P., Xiong F., et al. "Right atrial mechanisms of atrial fibrillation in a rat model of right heart disease". J Am Coll Cardiol . 2019;74:1332-1347.

    View ArticleGoogle Scholar
  • 22. Gallet R., de Couto G., Simsolo E., et al. "Cardiosphere-derived cells reverse heart failure with preserved ejection fraction (HFpEF) in rats by decreasing fibrosis and inflammation". J Am Coll Cardiol Basic Trans Science . 2016;1:14-28.

    View ArticleGoogle Scholar
  • 23. Lin Y.-J., Tai C.-T., Kao T., et al. "Frequency analysis in different types of paroxysmal atrial fibrillation". J Am Coll Cardiol . 2006;47:1401-1407.

    View ArticleGoogle Scholar
  • 24. Ai X., Pogwizd S.M. "Connexin 43 downregulation and dephosphorylation in nonischemic heart failure is associated with enhanced colocalized protein phosphatase type 2A". Circ Res . 2005;96:54-63.

    CrossrefMedlineGoogle Scholar
  • 25. Akar F.G., Spragg D.D., Tunin R.S., Kass D.A., Tomaselli G.F. "Mechanisms underlying conduction slowing and arrhythmogenesis in nonischemic dilated cardiomyopathy". Circ Res . 2004;95:717-725.

    CrossrefMedlineGoogle Scholar
  • 26. Burstein B., Nattel S. "Atrial fibrosis: mechanisms and clinical relevance in atrial fibrillation". J Am Coll Cardiol . 2008;51:802-809.

    View ArticleGoogle Scholar
  • 27. Harada M., Van Wagoner D.R., Nattel S. "Role of inflammation in atrial fibrillation pathophysiology and management". Circ J . 2015;79:495-502.

    CrossrefMedlineGoogle Scholar
  • 28. Samman Tahhan A., Sandesara P.B., Hayek S.S., et al. "Association between oxidative stress and atrial fibrillation". Heart Rhythm . 2017;14:1849-1855.

    CrossrefMedlineGoogle Scholar
  • 29. Cambier L., de Couto G., Ibrahim A., et al. "RNA fragment in extracellular vesicles confers cardioprotection via modulation of IL-10 expression and secretion". EMBO Mol Med . 2017;9:337-352.

    CrossrefMedlineGoogle Scholar
  • 30. Mesquita T., Lin Y.-N., Ibrahim A. "Chronic low-grade inflammation in heart failure with preserved ejection fraction". Aging Cell . 2021;20:e13453.

    CrossrefMedlineGoogle Scholar
  • 31. Paulus W.J., Tschöpe C. "A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation". J Am Coll Cardiol . 2013;62:263-271.

    View ArticleGoogle Scholar
  • 32. Kotecha D., Lam C.S.P., Van Veldhuisen D.J., Van Gelder I.C., Voors A.A., Rienstra M. "Heart failure with preserved ejection fraction and atrial fibrillation: vicious twins". J Am Coll Cardiol . 2016;68:2217-2228.

    View ArticleGoogle Scholar
  • 33. Reddy Y.N.V., Obokata M., Verbrugge F.H., Lin G., Borlaug B.A. "Atrial dysfunction in patients with heart failure with preserved ejection fraction and atrial fibrillation". J Am Coll Cardiol . 2020;76:1051-1064.

    View ArticleGoogle Scholar
  • 34. Li D., Fareh S., Leung T.K., Nattel S. "Promotion of atrial fibrillation by heart failure in dogs: atrial remodeling of a different sort". Circulation . 1999;100:87-95.

    CrossrefMedlineGoogle Scholar
  • 35. Packer M., Lam C.S.P., Lund L.H., Redfield M.M. "Interdependence of atrial fibrillation and heart failure with a preserved ejection fraction reflects a common underlying atrial and ventricular myopathy". Circulation . 2020;141:4-6.

    CrossrefMedlineGoogle Scholar
  • 36. Nattel S., Burstein B., Dobrev D. "Atrial remodeling and atrial fibrillation: mechanisms and implications". Circ Arrhythm Electrophysiol . 2008;1:62-73.

    CrossrefMedlineGoogle Scholar
  • 37. Shah S.J., Kitzman D.W., Borlaug B.A., et al. "Phenotype-specific treatment of heart failure with preserved ejection fraction: a multiorgan roadmap". Circulation . 2016;134:73-90.

    CrossrefMedlineGoogle Scholar
  • 38. Tseliou E., Fouad J., Reich H., et al. "Fibroblasts rendered antifibrotic, antiapoptotic, and angiogenic by priming with cardiosphere-derived extracellular membrane vesicles". J Am Coll Cardiol . 2015;66:599-611.

    View ArticleGoogle Scholar
  • 39. Sahoo S., Klychko E., Thorne T., et al. "Exosomes from human CD34(+) stem cells mediate their proangiogenic paracrine activity". Circ Res . 2011;109:724-728.

    CrossrefMedlineGoogle Scholar
  • 40. Arslan F., Lai R.C., Smeets M.B., et al. "Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury". Stem Cell Res . 2013;10:301-312.

    CrossrefMedlineGoogle Scholar
  • 41. Zhao Y., Sun X., Cao W., et al. "Exosomes derived from human umbilical cord mesenchymal stem cells relieve acute myocardial ischemic injury". Stem Cells Int . 2015;2015:761643.

    CrossrefGoogle Scholar
  • 42. Mathiyalagan P., Liang Y., Kim D., et al. "Angiogenic mechanisms of human CD34+ stem cell exosomes in the repair of ischemic hindlimb". Circ Res . 2017;120:1466-1476.

    CrossrefMedlineGoogle Scholar
  • 43. Braunwald E. "Cell-based therapy in cardiac regeneration: an overview". Circ Res . 2018;123:132-137.

    CrossrefMedlineGoogle Scholar
  • 44. Kishore R., Khan M. "More than tiny sacks: stem cell exosomes as cell-free modality for cardiac repair". Circ Res . 2016;118:330-343.

    CrossrefMedlineGoogle Scholar
  • 45. Tkach M., Théry C. "Communication by extracellular vesicles: where we are and where we need to go". Cell . 2016;164:1226-1232.

    CrossrefMedlineGoogle Scholar
  • 46. Garikipati V.N.S., Shoja-Taheri F., Davis M.E., Kishore R. "Extracellular vesicles and the application of system biology and computational modeling in cardiac repair". Circ Res . 2018;123:188-204.

    CrossrefMedlineGoogle Scholar
  • 47. Ibrahim A., Marbán E. "Exosomes: fundamental biology and roles in cardiovascular physiology". Annu Rev Physiol . 2016;78:67-83.

    CrossrefMedlineGoogle Scholar
  • 48. Silvestre J.-S., Menasché P. "The evolution of the stem cell theory for heart failure". EBioMedicine . 2015;2:1871-1879.

    CrossrefMedlineGoogle Scholar
  • 49. Yeo R.W.Y., Lai R.C., Zhang B., et al. "Mesenchymal stem cell: an efficient mass producer of exosomes for drug delivery". Adv Drug Deliv Rev . 2013;65:336-341.

    CrossrefMedlineGoogle Scholar
  • 50. Chen T.S., Arslan F., Yin Y., et al. "Enabling a robust scalable manufacturing process for therapeutic exosomes through oncogenic immortalization of human ESC-derived MSCs". J Transl Med . 2011;9:47.

    CrossrefMedlineGoogle Scholar
  • 51. Hanna N., Cardin S., Leung T.-K., Nattel S. "Differences in atrial versus ventricular remodeling in dogs with ventricular tachypacing-induced congestive heart failure". Cardiovasc Res . 2004;63:236-244.

    CrossrefMedlineGoogle Scholar