Skip to main content
Skip main navigationClose Drawer MenuOpen Drawer Menu

Complement C5 Protein as a Marker of Subclinical AtherosclerosisOpen Access

Original Investigation

J Am Coll Cardiol, 75 (16) 1926–1941
Sections

Central Illustration

Abstract

Background

The mechanisms underlying early atherosclerotic plaque formation are not completely understood. Moreover, plasma biomarkers of subclinical atherosclerosis are lacking.

Objectives

The purpose of this study was to analyze the temporal and topologically resolved protein changes taking place in human aortas with early atherosclerosis to find new potential diagnostic and/or therapeutic targets.

Methods

The protein composition of healthy aortas (media layer) or with early atheroma (fatty streak and fibrolipidic, media and intima layers) was analyzed by deep quantitative multiplexed proteomics. Further analysis was performed by Western blot, immunohistochemistry, real-time polymerase chain reaction, and enzyme-linked immunosorbent assay. Plasma levels of complement C5 were analyzed in relation to the presence of generalized (>2 plaques) or incipient (0 to 2 plaques) subclinical atherosclerosis in 2 independent clinical cohorts (PESA [Progression of Early Subclinical Atherosclerosis] [n = 360] and NEFRONA [National Observatory of Atherosclerosis in Nephrology] [n = 394]).

Results

Proteins involved in lipid transport, complement system, immunoglobulin superfamily, and hemostasis are increased in early plaques. Components from the complement activation pathway were predominantly increased in the intima of fibrolipidic plaques. Among them, increased C5 protein levels were further confirmed by Western blot, enzyme-linked immunosorbent assay and immunohistochemistry, and associated with in situ complement activation. Plasma C5 was significantly increased in individuals with generalized subclinical atherosclerosis in both PESA and NEFRONA cohorts, independently of risk factors. Moreover, in the PESA study, C5 plasma levels positively correlated with global plaque volume and coronary calcification.

Conclusions

Activation of the complement system is a major alteration in early atherosclerotic plaques and is reflected by increased C5 plasma levels, which have promising value as a novel circulating biomarker of subclinical atherosclerosis.

References

  • 1. Fernández-Friera L., Peñalvo J.L., Fernández-Ortiz A., et al. "Prevalence, vascular distribution, and multiterritorial extent of subclinical atherosclerosis in a middle-aged cohort: the PESA (Progression of Early Subclinical Atherosclerosis) Study". Circulation 2015;131:2104-2113.

    CrossrefMedlineGoogle Scholar
  • 2. Baber U., Mehran R., Sartori S., et al. "Prevalence, impact, and predictive value of detecting subclinical coronary and carotid atherosclerosis in asymptomatic adults: the BioImage study". J Am Coll Cardiol 2015;65:1065-1074.

    View ArticleGoogle Scholar
  • 3. Yusuf S., Rangarajan S., Teo K., et al. "Cardiovascular risk and events in 17 low-, middle-, and high-income countries". N Engl J Med 2014;371:818-827.

    CrossrefMedlineGoogle Scholar
  • 4. Tabas I., Williams K.J., Borén J. "Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications". Circulation 2007;116:1832-1844.

    CrossrefMedlineGoogle Scholar
  • 5. Ross R., Glomset J., Harker L. "Response to injury and atherogenesis". Am J Pathol 1977;86:675-684.

    MedlineGoogle Scholar
  • 6. Tuñón J., Barbas C., Blanco-Colio L., et al. "Proteomics and metabolomics in biomarker discovery for cardiovascular diseases: progress and potential". Expert Rev Proteomics 2016;13:857-871.

    CrossrefMedlineGoogle Scholar
  • 7. Herrington D.M., Mao C., Parker S.J., et al. "Proteomic architecture of human coronary and aortic atherosclerosis". Circulation 2018;137:2741-2756.

    CrossrefMedlineGoogle Scholar
  • 8. Langley S.R., Willeit K., Didangelos A., et al. "Extracellular matrix proteomics identifies molecular signature of symptomatic carotid plaques". J Clin Invest 2017;127:1546-1560.

    CrossrefMedlineGoogle Scholar
  • 9. Navarro P., Vázquez J. "A refined method to calculate false discovery rates for peptide identification using decoy databases". J Proteome Res 2009;8:1792-1796.

    CrossrefMedlineGoogle Scholar
  • 10. Bonzon-Kulichenko E., Garcia-Marques F., Trevisan-Herraz M., Vázquez J. "Revisiting peptide identification by high-accuracy mass spectrometry: problems associated with the use of narrow mass precursor windows". J Proteome Res 2015;14:700-710.

    CrossrefMedlineGoogle Scholar
  • 11. Navarro P., Trevisan-Herraz M., Bonzon-Kulichenko E., et al. "General statistical framework for quantitative proteomics by stable isotope labeling". J Proteome Res 2014;13:1234-1247.

    CrossrefMedlineGoogle Scholar
  • 12. Garcia-Marques F., Trevisan-Herraz M., Martínez-Martínez S., et al. "A novel systems-biology algorithm for the analysis of coordinated protein responses using quantitative proteomics". Mol Cell Proteomics 2016;15:1740-1760.

    CrossrefMedlineGoogle Scholar
  • 13. Trevisan-Herraz M., Bagwan N., Garcia-Marques F., et al. "SanXoT: a modular and versatile package for the quantitative analysis of high-throughput proteomics experiments". Bioinformatics 2019;35:1594-1596.

    CrossrefMedlineGoogle Scholar
  • 14. Fernandez-García C.-E., Tarin C., Roldan-Montero R., et al. "Increased galectin-3 levels are associated with abdominal aortic aneurysm progression and inhibition of galectin-3 decreases elastase-induced AAA development". Clin Sci 2017;131:2707-2719.

    CrossrefMedlineGoogle Scholar
  • 15. Junyent M., Martínez M., Borràs M., et al. "Predicting cardiovascular disease morbidity and mortality in chronic kidney disease in Spain. The rationale and design of NEFRONA: a prospective, multicenter, observational cohort study". BMC Nephrol 2010;11:14.

    CrossrefMedlineGoogle Scholar
  • 16. López-Melgar B., Fernández-Friera L., Oliva B., et al. "Subclinical atherosclerosis burden by 3D ultrasound in mid-life: the PESA study". J Am Coll Cardiol 2017;70:301-313.

    View ArticleGoogle Scholar
  • 17. Michel J.-B., Thaunat O., Houard X., Meilhac O., Caligiuri G., Nicoletti A. "Topological determinants and consequences of adventitial responses to arterial wall injury". Arterioscler Thromb Vasc Biol 2007;27:1259-1268.

    CrossrefMedlineGoogle Scholar
  • 18. Zhang Y., Cliff W.J., Schoefl G.I., Higgins G. "Plasma protein insudation as an index of early coronary atherogenesis". Am J Pathol 1993;143:496-506.

    MedlineGoogle Scholar
  • 19. Fernández-Friera L., Fuster V., López-Melgar B., et al. "Vascular Inflammation in Subclinical Atherosclerosis Detected by Hybrid PET/MRI". J Am Coll Cardiol 2019;73:1371-1382.

    View ArticleGoogle Scholar
  • 20. Borissoff J.I., Heeneman S., Kilinç E., et al. "Early atherosclerosis exhibits an enhanced procoagulant state". Circulation 2010;122:821-830.

    CrossrefMedlineGoogle Scholar
  • 21. Vlaicu R., Rus H.G., Niculescu F., Cristea A. "Quantitative determinations of immunoglobulins and complement components in human aortic atherosclerotic wall". Med Interne 1985;23:29-35.

    MedlineGoogle Scholar
  • 22. Seifert P.S., Hugo F., Tranum-Jensen J., Zâhringer U., Muhly M., Bhakdi S. "Isolation and characterization of a complement-activating lipid extracted from human atherosclerotic lesions". J Exp Med 1990;172:547-557.

    CrossrefMedlineGoogle Scholar
  • 23. Samstad E.O., Niyonzima N., Nymo S., et al. "Cholesterol crystals induce complement-dependent inflammasome activation and cytokine release". J Immunol 2014;192:2837-2845.

    CrossrefMedlineGoogle Scholar
  • 24. Amara U., Flierl M.A., Rittirsch D., et al. "Molecular intercommunication between the complement and coagulation systems". J Immunol 2010;185:5628-5636.

    CrossrefMedlineGoogle Scholar
  • 25. Morgan B.P. "The membrane attack complex as an inflammatory trigger". Immunobiology 2016;221:747-751.

    CrossrefMedlineGoogle Scholar
  • 26. Wu G., Hu W., Shahsafaei A., et al. "Complement regulator CD59 protects against atherosclerosis by restricting the formation of complement membrane attack complex". Circ Res 2009;104:550-558.

    CrossrefMedlineGoogle Scholar
  • 27. Yin C., Ackermann S., Ma Z., et al. "ApoE attenuates unresolvable inflammation by complex formation with activated C1q". Nat Med 2019;25:496-506.

    CrossrefMedlineGoogle Scholar
  • 28. Hovland A., Jonasson L., Garred P., et al. "The complement system and toll-like receptors as integrated players in the pathophysiology of atherosclerosis". Atherosclerosis 2015;241:480-494.

    CrossrefMedlineGoogle Scholar
  • 29. Martel C., Granger C.B., Ghitescu M., et al. "Pexelizumab fails to inhibit assembly of the terminal complement complex in patients with ST-elevation myocardial infarction undergoing primary percutaneous coronary intervention. Insight from a substudy of the Assessment of Pexelizumab in Acute Myocardial Infarction (APEX-AMI) trial". Am Heart J 2012;164:43-51.

    MedlineGoogle Scholar
  • 30. Hertle E., van Greevenbroek M.M.J., Arts I.C.W., et al. "Complement activation products C5a and sC5b-9 are associated with low-grade inflammation and endothelial dysfunction, but not with atherosclerosis in a cross-sectional analysis: the CODAM study". Int J Cardiol 2014;174:400-403.

    CrossrefMedlineGoogle Scholar
  • 31. Fernández-Friera L., Ibáñez B., Fuster V. "Imaging subclinical atherosclerosis: is it ready for prime time? A review". J Cardiovasc Transl Res 2014;7:623-634.

    CrossrefMedlineGoogle Scholar