Skip to main content

Conduits’ Biology Regulates the Outcomes of Coronary Artery Bypass Grafting

State-of-the-Art Review

J Am Coll Cardiol Basic Trans Science, 6 (4) 388–396
Sections

Central Illustration

Highlights

Accelerated atherosclerosis is common when SVGs, but not arterial grafts, are used for myocardial revascularization during CABG.

This review will provide an overview of the available data on the most commonly used conduits in CABG, highlighting the differences in their cellular biology, mechanical, biochemical, and vasoconstrictive properties.

Clinical and scientific evidence support the use of arterial grafts over venous conduits at the time of CABG. These arterial conduits seem to be more protected toward the development of atherosclerosis. Exploring the molecular and cellular mechanisms, of the various cell populations within these conduits, will help unveil the pathways responsible for these protective effects.

Summary

Coronary artery bypass graft (CABG) is the gold standard for coronary surgical revascularization. Retrospective, prospective, and meta-analysis studies looking into long-term outcomes of using different conduits have pointed to the superiority of arterial grafts over veins and have placed the internal mammary artery as the standard conduit of choice for CABG. The superiority of the internal mammary artery over other conduits could be attributable to its intrinsic characteristics; however, little is known regarding the features that render some conduits atherosclerosis-prone and others atherosclerosis-resistant. Here, an overview is provided of the available data on the most commonly used conduits in CABG (internal mammary artery, saphenous vein, radial artery, gastroepiploic artery), highlighting the differences in their cellular biology, mechanical, biochemical, and vasoconstrictive properties. This information should help in furthering our understanding of the clinical outcomes observed for each of these conduits.

  • 1. Lloyd-Jones D., Adams R.J., Brown T.M., et al. "Executive summary: heart disease and stroke statistics—2010 update: a report from the American Heart Association". Circulation 2010;121:948-954.

    CrossrefMedlineGoogle Scholar
  • 2. Cameron A., Davis K.B., Green G., Schaff H.V. "Coronary bypass surgery with internal-thoracic-artery grafts—effects on survival over a 15-year period". N Engl J Med 1996;334:216-219.

    CrossrefMedlineGoogle Scholar
  • 3. Sims F.H. "A comparison of coronary and internal mammary arteries and implications of the results in the etiology of arteriosclerosis". Am Heart J 1983;105:560-566.

    CrossrefMedlineGoogle Scholar
  • 4. Blaas I., Heinz K., Würtinger P., et al. "Vein graft thrombi, a niche for smooth muscle cell colonization—a hypothesis to explain the asymmetry of intimal hyperplasia". J Thromb Haemost 2016;14:1095-1104.

    CrossrefMedlineGoogle Scholar
  • 5. Shelton M.E., Forman M.B., Virmani R., Bajaj A., Stoney W.S., Atkinson J.B. "A comparison of morphologic and angiographic findings in long-term internal mammary artery and saphenous vein bypass grafts". J Am Coll Cardiol 1988;11:297-307.

    View ArticleGoogle Scholar
  • 6. Carpentier A., Guermonprez J.L., Deloche A., Frechette C., DuBost C. "The aorta-to-coronary radial artery bypass graft: a technique avoiding pathological changes in grafts". Ann Thorac Surg 1973;16:111-121.

    CrossrefMedlineGoogle Scholar
  • 7. Deb S., Cohen E.A., Singh S.K., et al. "for the RAPS Investigators. Radial artery and saphenous vein patency more than 5 years after coronary artery bypass surgery: results from RAPS (Radial Artery Patency Study)". J Am Coll Cardiol 2012;60:28-35.

    View ArticleGoogle Scholar
  • 8. Hayward P.A.R., Hare D.L., Gordon I., Matalanis G., Buxton B.F. "Which arterial conduit? Radial artery versus free right internal thoracic artery: six-year clinical results of a randomized controlled trial". Ann Thorac Surg 2007;84:493-497.discussion 497.

    CrossrefMedlineGoogle Scholar
  • 9. Gaudino M., Benedetto U., Fremes S., et al.for the RADIAL Investigators. "Association of radial artery graft vs saphenous vein graft with long-term cardiovascular outcomes among patients undergoing coronary artery bypass grafting: a systematic review and meta-analysis". JAMA 2020;324:179-187.

    CrossrefMedlineGoogle Scholar
  • 10. Suma H., Isomura T., Horii T., Sato T. "Late angiographic result of using the right gastroepiploic artery as a graft". J Thorac Cardiovasc Surg 2000;120:496-498.

    CrossrefMedlineGoogle Scholar
  • 11. Canham P.B., Finlay H.M., Boughner D.R. "Contrasting structure of the saphenous vein and internal mammary artery used as coronary bypass vessels". Cardiovasc Res 1997;34:557-567.

    CrossrefMedlineGoogle Scholar
  • 12. González Santos J.M., López Rodríguez J., Dalmau Sorlí M.J. "[Arterial grafts in coronary surgery. Treatment for everyone?]". Rev Esp Cardiol 2005;58:1207-1223.

    MedlineGoogle Scholar
  • 13. Appleson T., Hill R.V. "Histological comparison of the candidate arteries for bypass grafting of the posterior interventricular artery". Anat Sci Int 2012;87:150-154.

    CrossrefMedlineGoogle Scholar
  • 14. van Son J.A., Smedts F.M., Yang C.Q., et al. "Morphometric study of the right gastroepiploic and inferior epigastric arteries". Ann Thorac Surg 1997;63:709-715.

    CrossrefMedlineGoogle Scholar
  • 15. Ko Y.-S., Yeh H.-I., Haw M., et al. "Differential expression of connexin43 and desmin defines two subpopulations of medial smooth muscle cells in the human internal mammary artery". Arterioscler Thromb Vasc Biol 1999;19:1669-1680.

    CrossrefMedlineGoogle Scholar
  • 16. Yang Z., Oemar B.S., Carrel T., Kipfer B., Julmy F., Lüscher T.F. "Different proliferative properties of smooth muscle cells of human arterial and venous bypass vessels: role of PDGF receptors, mitogen-activated protein kinase, and cyclin-dependent kinase inhibitors". Circulation 1998;97:181-187.

    CrossrefMedlineGoogle Scholar
  • 17. Zhu T., Lan B., Meng L., et al. "ECM-related gene expression profile in vascular smooth muscle cells from human saphenous vein and internal thoracic artery". J Cardiothorac Surg 2013;8:155.

    CrossrefMedlineGoogle Scholar
  • 18. Frischknecht K., Greutert H., Weisshaupt C., et al. "Different vascular smooth muscle cell apoptosis in the human internal mammary artery and the saphenous vein: implications for bypass graft disease". J Vasc Res 2006;43:338-346.

    CrossrefMedlineGoogle Scholar
  • 19. Mekontso-Dessap A., Kirsch M., Guignambert C., et al. "Vascular-wall remodeling of 3 human bypass vessels: organ culture and smooth muscle cell properties". J Thorac Cardiovasc Surg 2006;131:651-658.

    CrossrefMedlineGoogle Scholar
  • 20. Sisto T., Ylä-Herttuala S., Luoma J., Riekkinen H., Nikkari T. "Biochemical composition of human internal mammary artery and saphenous vein". J Vasc Surg 1990;11:418-422.

    CrossrefMedlineGoogle Scholar
  • 21. Ylä-Herttuala S., Sumuvuori H., Karkola K., Möttönen M., Nikkari T. "Glycosaminoglycans in normal and atherosclerotic human coronary arteries". Lab Invest 1986;54:402-407.

    MedlineGoogle Scholar
  • 22. Merrilees M.J., Beaumont B., Scott L.J. "Comparison of deposits of versican, biglycan and decorin in saphenous vein and internal thoracic, radial and coronary arteries: correlation to patency". Coron Artery Dis 2001;12:7-16.

    CrossrefMedlineGoogle Scholar
  • 23. Anstadt M.P., Franga D.L., Portik-Dobos V., et al. "Native matrix metalloproteinase characteristics may influence early stenosis of venous versus arterial coronary artery bypass grafting conduits". Chest 2004;125:1853-1858.

    CrossrefMedlineGoogle Scholar
  • 24. Virk H.U.H., Lakhter V., Ahmed M., O’ Murchu B., Chatterjee S. "Radial artery versus saphenous vein grafts in coronary artery bypass surgery: a literature review". Curr Cardiol Rep 2019;21:36.

    CrossrefMedlineGoogle Scholar
  • 25. Bashour T.T., Hanna E.S., Mason D.T. "Myocardial revascularization with internal mammary artery bypass: an emerging treatment of choice". Am Heart J 1986;111:143-151.

    CrossrefMedlineGoogle Scholar
  • 26. Predel H.G., Yang Z., von Segesser L., Turina M., Bühler F.R., Lüscher T.F. "Implications of pulsatile stretch on growth of saphenous vein and mammary artery smooth muscle". Lancet 1992;340:878-879.

    CrossrefMedlineGoogle Scholar
  • 27. Chamiot-Clerc P., Copie X., Renaud J.F., Safar M., Girerd X. "Comparative reactivity and mechanical properties of human isolated internal mammary and radial arteries". Cardiovasc Res 1998;37:811-819.

    CrossrefMedlineGoogle Scholar
  • 28. Acar C., Jebara V.A., Portoghese M., et al. "Revival of the radial artery for coronary artery bypass grafting". Ann Thorac Surg 1992;54:652-659.discussion 659–60.

    CrossrefMedlineGoogle Scholar
  • 29. Nishioka H., Kitamura S., Kameda Y., Taniguchi S., Kawata T., Mizuguchi K. "Difference in acetylcholine-induced nitric oxide release of arterial and venous grafts in patients after coronary bypass operations". J Thorac Cardiovasc Surg 1998;116:454-459.

    CrossrefMedlineGoogle Scholar
  • 30. He G.-W., Yang C.-Q. "Radial artery has higher receptor-mediated contractility but similar endothelial function compared with mammary artery". Ann Thorac Surg 1997;63:1346-1352.

    CrossrefMedlineGoogle Scholar
  • 31. Napoli C., de Nigris F., Palinski W. "Multiple role of reactive oxygen species in the arterial wall". J Cell Biochem 2001;82:674-682.

    CrossrefMedlineGoogle Scholar
  • 32. McGorisk G.M., Treasure C.B. "Endothelial dysfunction in coronary heart disease". Curr Opin Cardiol 1996;11:341-350.

    CrossrefMedlineGoogle Scholar
  • 33. Müller-Schweinitzer E., Müller S.E., Reineke D.C., et al. "Reactive oxygen species mediate functional differences in human radial and internal thoracic arteries from smokers". J Vasc Surg 2010;51:438-444.

    CrossrefMedlineGoogle Scholar
  • 34. Otsuka F., Yahagi K., Sakakura K., Virmani R. "Why is the mammary artery so special and what protects it from atherosclerosis?". Ann Cardiothorac Surg 2013;2:519-526.

    MedlineGoogle Scholar
  • 35. Stähli B.E., Greutert H., Mei S., et al. "Absence of histamine-induced nitric oxide release in the human radial artery: implications for vasospasm of coronary artery bypass vessels". Am J Physiol Heart Circ Physiol 2006;290:H1182-H1189.

    CrossrefMedlineGoogle Scholar
  • 36. Payeli S.K., Latini R., Gebhard C., et al. "Prothrombotic gene expression profile in vascular smooth muscle cells of human saphenous vein, but not internal mammary artery". Arterioscler Thromb Vasc Biol 2008;28:705-710.

    CrossrefMedlineGoogle Scholar
  • 37. Lopes R.D., Hafley G.E., Allen K.B., et al. "Endoscopic versus open vein-graft harvesting in coronary-artery bypass surgery". N Engl J Med 2009;361:235-244.

    CrossrefMedlineGoogle Scholar
  • 38. Zenati M.A., Bhatt D.L., Bakaeen F.G., et al.for the REGROUP Trial Investigators. "Randomized trial of endoscopic or open vein-graft harvesting for coronary-artery bypass". N Engl J Med 2019;380:132-141.

    CrossrefMedlineGoogle Scholar
  • 39. Goldman S., Zadina K., Moritz T., et al. "Long-term patency of saphenous vein and left internal mammary artery grafts after coronary artery bypass surgery: results from a Department of Veterans Affairs Cooperative Study". J Am Coll Cardiol 2004;44:2149-2156.

    View ArticleGoogle Scholar
  • 40. Tamim M., Alexiou C., Al-Hassan D., Al-Faraidy K. "Prospective randomized trial of endoscopic vs open radial artery harvest for CABG: clinical outcome, patient satisfaction, and midterm RA graft patency". J Card Surg 2020;35:2147-2154.

    CrossrefMedlineGoogle Scholar
  • 41. Asai T., Tabata S. "Skeletonization of the right gastroepiploic artery using an ultrasonic scalpel". Ann Thorac Surg 2002;74:1715-1717.

    CrossrefMedlineGoogle Scholar
  • 42. He G.-W. "Arterial Grafting for Coronary Artery Bypass Surgery". New York, NY: Springer Science and Business Media, 2006.

    Google Scholar
  • 43. McGeachie J.K., Meagher S., Prendergast F.J. "Vein-to-artery grafts: the long-term development of neo-intimal hyperplasia and its relationship to vasa vasorum and sympathetic innervation". Aust N Z J Surg 1989;59:59-65.

    CrossrefMedlineGoogle Scholar
  • 44. Angelini G.D., Passani S.L., Breckenridge I.M., Newby A.C. "Nature and pressure dependence of damage induced by distension of human saphenous vein coronary artery bypass grafts". Cardiovasc Res 1987;21:902-907.

    CrossrefMedlineGoogle Scholar
  • 45. Allaire E., Clowes A.W. "Endothelial cell injury in cardiovascular surgery: the intimal hyperplastic response". Ann Thorac Surg 1997;63:582-591.

    CrossrefMedlineGoogle Scholar
  • 46. Cameron A.A., Green G.E., Brogno D.A., Thornton J. "Internal thoracic artery grafts: 20-year clinical follow-up". J Am Coll Cardiol 1995;25:188-192.

    View ArticleGoogle Scholar
  • 47. Uydeş-Doǧan B.S., Nebigil M., S-Aslamaci M.D., Onuk E., Kanzik I., Akar F. "The comparison of vascular reactivities of arterial and venous grafts to vasodilators: management of graft spasm". Int J Cardiol 1996;53:137-145.

    CrossrefMedlineGoogle Scholar
  • 48. Gaudino M., Benedetto U., Fremes S.E., et al.for the RADIAL Investigators. "Effect of calcium-channel blocker therapy on radial artery grafts after coronary bypass surgery". J Am Coll Cardiol 2019;73:2299-2306.

    View ArticleGoogle Scholar
  • 49. Ferrari G., Quackenbush J., Strobeck J., et al. "Comparative genome-wide transcriptional analysis of human left and right internal mammary arteries". Genomics 2014;104:36-44.

    CrossrefMedlineGoogle Scholar
  • 50. Dimitrova K.R., Hoffman D.M., Geller C.M., Dincheva G., Ko W., Tranbaugh R.F. "Arterial grafts protect the native coronary vessels from atherosclerotic disease progression". Ann Thorac Surg 2012;94:475-481.

    CrossrefMedlineGoogle Scholar