Skip to main content
Skip main navigationClose Drawer MenuOpen Drawer Menu

Prognostic Value of Hemodynamic Gain Index in Patients With Heart Failure With Reduced Ejection FractionGET ACCESS

Heart Failure

J Am Coll Cardiol HF, 12 (2) 261–271
Sections

Central Illustration

Abstract

Background

Assessment of functional capacity in patients with heart failure with reduced ejection fraction (HFrEF) is essential for risk stratification, and it traditionally relied on cardiopulmonary exercise testing (CPET)–derived peak oxygen consumption (peak Vo2).

Objectives

This study sought to investigate the prognostic value of alternative nonmetabolic exercise testing parameters in a contemporary cohort with HFrEF.

Methods

Medical records of 1,067 consecutive patients with chronic HFrEF who underwent CPET from December 2012 to September 2020 were reviewed for a primary outcome that was a composite of all-cause mortality, left ventricular assist device implantation, and/or heart transplantation. Multivariable Cox regression and log-rank testing were used to determine prognostic values of various exercise testing variables.

Results

The primary outcome was identified in 331 of 954 patients (34.7%) of the HFrEF cohort (median follow-up time, 946 days). After adjustment for demographics, cardiac parameters, and comorbidities, higher hemodynamic gain index (HGI) and peak rate-pressure product (RPP) were associated with greater event-free survival (adjusted HR per doubling: 0.76 and 0.36; 95% CI: 0.67-0.87 and 0.28-0.47; all P < 0.001, respectively). Moreover, HGI (area under the curve [AUC]: 0.69; 95% CI: 0.65-0.72) and peak RPP (AUC: 0.71; 95% CI: 0.68-0.74) were comparable to the standard peak Vo2 (AUC: 0.70; 95% CI: 0.66-0.73; P for comparison = 0.607 and 0.393, respectively) for primary outcome discrimination.

Conclusions

HGI and peak RPP show good correlation with peak Vo2 in terms of prognostication and outcome discrimination in patients with HFrEF and may serve as suitable alternatives to CPET-derived prognostic variables.

References

  • 1. Heidenreich P.A., Bozkurt B., Aguilar D., et al. "2022 AHA/ACC/HFSA guideline for the management of heart failure". J Am Coll Cardiol . 2022;79:e263-e421.

    View ArticleGoogle Scholar
  • 2. Mehra M.R., Canter C.E., Hannan M.M., et al. "The 2016 International Society for Heart Lung Transplantation listing criteria for heart transplantation: a 10-year update". J Heart Lung Transplant . 2016;35:1-23.

    CrossrefMedlineGoogle Scholar
  • 3. Feldman D., Pamboukian S.V., Teuteberg J.J., et al. "The 2013 International Society for Heart and Lung Transplantation Guidelines for mechanical circulatory support: executive summary". J Heart Lung Transplant . 2013;32:157-187.

    CrossrefMedlineGoogle Scholar
  • 4. Corrà U., Agostoni P.G., Anker S.D., et al. "Role of cardiopulmonary exercise testing in clinical stratification in heart failure. A position paper from the Committee on Exercise Physiology and Training of the Heart Failure Association of the European Society of Cardiology". Eur J Heart Fail . 2018;20:3-15.

    CrossrefMedlineGoogle Scholar
  • 5. Mancini D.M., Eisen H., Kussmaul W., Mull R., Edmunds L.H., Wilson J.R. "Value of peak exercise oxygen consumption for optimal timing of cardiac transplantation in ambulatory patients with heart failure". Circulation . 1991;83:778-786.

    CrossrefMedlineGoogle Scholar
  • 6. Balady G.J., Arena R., Sietsema K., et al. "Clinician’s guide to cardiopulmonary exercise testing in adults". Circulation . 2010;122:191-225.

    CrossrefMedlineGoogle Scholar
  • 7. Faggiano P., D'Aloia A., Gualeni A., Brentana L., Cas L.D. "The 6 minute walking test in chronic heart failure: indications, interpretation and limitations from a review of the literature". Eur J Heart Fail . 2004;6:687-691.

    CrossrefMedlineGoogle Scholar
  • 8. Opasich C., Pinna G.D., Mazza A., et al. "Reproducibility of the six-minute walking test in patients with chronic congestive heart failure: practical implications". Am J Cardiol . 1998;81:1497-1500.

    CrossrefMedlineGoogle Scholar
  • 9. Gobel F.L., Norstrom L.A., Nelson R.R., Jorgensen C.R., Wang Y. "The rate-pressure product as an index of myocardial oxygen consumption during exercise in patients with angina pectoris". Circulation . 1978;57:549-556.

    CrossrefMedlineGoogle Scholar
  • 10. Fletcher G.F., Ades P.A., Kligfield P., et al. "Exercise standards for testing and training". Circulation . 2013;128:873-934.

    CrossrefMedlineGoogle Scholar
  • 11. Elhendy A., Modesto K.M., Mahoney D.W., Khandheria B.K., Seward J.B., Pellikka P.A. "Prediction of mortality in patients with left ventricular hypertrophy by clinical, exercise stress, and echocardiographic data". J Am Coll Cardiol . 2003;41:129-135.

    View ArticleGoogle Scholar
  • 12. Schinkel A.F.L., Elhendy A., Bax J.J., et al. "Prognostic implications of a normal stress technetium-99m-tetrofosmin myocardial perfusion study in patients with a healed myocardial infarct and/or previous coronary revascularization". Am J Cardiol . 2006;97:1-6.

    CrossrefMedlineGoogle Scholar
  • 13. Sadrzadeh Rafie A.H., Sungar G.W., Dewey F.E., Hadley D., Myers J., Froelicher V.F. "Prognostic value of double product reserve". Eur J Cardiovasc Prev Rehabil . 2008;15:541-547.

    CrossrefMedlineGoogle Scholar
  • 14. Ilias N.A., Xian H., Inman C., Martin W.H. "Arm exercise testing predicts clinical outcome". Am Heart J . 2009;157:69-76.

    CrossrefMedlineGoogle Scholar
  • 15. Whitman M., Jenkins C., Sabapathy S., Adams L. "Comparison of heart rate blood pressure product versus age-predicted maximum heart rate as predictors of cardiovascular events during exercise stress echocardiography". Am J Cardiol . 2019;124:528-533.

    CrossrefMedlineGoogle Scholar
  • 16. Whitman M., Jenkins C. "Rate pressure product, age predicted maximum heart rate or heart rate reserve. Which one better predicts cardiovascular events following exercise stress echocardiography?"Am J Cardiovasc Dis . 2021;11:450-457.

    MedlineGoogle Scholar
  • 17. Vainshelboim B., Kokkinos P., Myers J. "Prognostic value and clinical usefulness of the hemodynamic gain index in men". Am J Cardiol . 2019;124:644-649.

    CrossrefMedlineGoogle Scholar
  • 18. Vainshelboim B., Kokkinos P., Myers J. "Hemodynamic gain index in women: a validation study". Int J Cardiol . 2020;308:15-19.

    CrossrefMedlineGoogle Scholar
  • 19. Chaikijurajai T., Wu Y., Grodin J.L., Harb S., Jaber W., Tang W.H.W. "Validation of prognostic value of the hemodynamic gain index in different groups of patients undergoing exercise stress testing". Am Heart J Plus . 2022;18:100174.

    MedlineGoogle Scholar
  • 20. Morales-Oyarvide V., Richards D., Hendren N.S., et al. "Hemodynamic gain index and exercise capacity in heart failure with preserved ejection fraction". Am J Cardiol . 2023;190:17-24.

    CrossrefMedlineGoogle Scholar
  • 21. Malhotra R., Bakken K., D’Elia E., Lewis G.D. "Cardiopulmonary exercise testing in heart failure". J Am Coll Cardiol HF . 2016;4:607-616.

    Google Scholar
  • 22. Arena R., Guazzi M., Myers J. "Prognostic value of end-tidal carbon dioxide during exercise testing in heart failure". Int J Cardiol . 2007;117:103-108.

    CrossrefMedlineGoogle Scholar
  • 23. Guazzi M., Arena R., Ascione A., Piepoli M., Guazzi M.D. "Exercise oscillatory breathing and increased ventilation to carbon dioxide production slope in heart failure: an unfavorable combination with high prognostic value". Am Heart J . 2007;153:859-867.

    CrossrefMedlineGoogle Scholar
  • 24. Leclerc K. "Cardiopulmonary exercise testing: a contemporary and versatile clinical tool". Cleve Clin J Med . 2017;84:161-168.

    CrossrefMedlineGoogle Scholar
  • 25. Harb S.C., Wang T.K.M., Cremer P.C., et al. "Associations between cardiorespiratory fitness, sex and long term mortality amongst adults undergoing exercise treadmill testing". Int J Cardiol . 2021;342:103-107.

    CrossrefMedlineGoogle Scholar
  • 26. Gorodeski E.Z., Cantillon D.J., Goel S.S., et al. "Microvolt T-wave alternans, peak oxygen consumption, and outcome in patients with severely impaired left ventricular systolic function". J Heart Lung Transplant . 2009;28:689-696.

    CrossrefMedlineGoogle Scholar
  • 27. Hsich E., Gorodeski E.Z., Starling R.C., Blackstone E.H., Ishwaran H., Lauer M.S. "Importance of treadmill exercise time as an initial prognostic screening tool in patients with systolic left ventricular dysfunction". Circulation . 2009;119:3189-3197.

    CrossrefMedlineGoogle Scholar
  • 28. Hansen J.E., Sue D.Y., Wasserman K. "Predicted values for clinical exercise testing". Am Rev Respir Dis . 1984;129:S49-S55.

    CrossrefMedlineGoogle Scholar
  • 29. Wasserman K., Whipp B.J., Koyl S.N., Beaver W.L. "Anaerobic threshold and respiratory gas exchange during exercise". J Appl Physiol . 1973;35:236-243.

    CrossrefMedlineGoogle Scholar
  • 30. Cohen-Solal A., Tabet J.Y., Logeart D., Bourgoin P., Tokmakova M., Dahan M. "A non-invasively determined surrogate of cardiac power (‘circulatory power’) at peak exercise is a powerful prognostic factor in chronic heart failure". Eur Heart J . 2002;23:806-814.

    CrossrefMedlineGoogle Scholar
  • 31. Zweerink A., van der Lingen A.C.J., Handoko M.L., van Rossum A.C., Allaart C.P. "Chronotropic incompetence in chronic heart failure". Circ Heart Fail . 2018;11:e004969.

    CrossrefMedlineGoogle Scholar
  • 32. Lala A., Shah K.B., Lanfear D.E., et al. "Predictive value of cardiopulmonary exercise testing parameters in ambulatory advanced heart failure". J Am Coll Cardiol HF . 2021;9:226-236.

    Google Scholar
  • 33. Il’Giovine Z.J., Solomon N., Devore A.D., Wojdyla D., Patel C.B., Rogers J.G. "Blood pressure response during cardiopulmonary exercise testing in heart failure". Med Sci Sports Exerc . 2018;50:1345-1349.

    CrossrefMedlineGoogle Scholar
  • 34. Brubaker P.H., Kitzman D.W. "Chronotropic incompetence". Circulation . 2011;123:1010-1020.

    CrossrefMedlineGoogle Scholar
  • 35. Kitamura K., Jorgensen C.R., Gobel F.L., Taylor H.L., Wang Y. "Hemodynamic correlates of myocardial oxygen consumption during upright exercise". J Appl Physiol . 1972;32:516-522.

    CrossrefMedlineGoogle Scholar
  • 36. Piña I.L., Apstein C.S., Balady G.J., et al. "Exercise and heart failure". Circulation . 2003;107:1210-1225.

    CrossrefMedlineGoogle Scholar
  • 37. Del Buono M.G., Arena R., Borlaug B.A., et al. "Exercise intolerance in patients with heart failure: JACC state-of-the-art review". J Am Coll Cardiol . 2019;73:2209-2225.

    View ArticleGoogle Scholar
  • 38. Keteyian S.J., Patel M., Kraus W.E., et al. "Variables measured during cardiopulmonary exercise testing as predictors of mortality in chronic systolic heart failure". J Am Coll Cardiol . 2016;67:780-789.

    View ArticleGoogle Scholar