Skip to main content
Skip main navigation

Short-Term Effects of Lower Air Temperature and Cold Spells on Myocardial Infarction Hospitalizations in SwedenGET ACCESS

Original Research

JACC, 84 (13) 1149–1159
Sections

Abstract

Background

Lower air temperature and cold spells have been associated with an increased risk of various diseases. However, the short-term effect of lower air temperature and cold spells on myocardial infarction (MI) remains incompletely understood.

Objectives

The purpose of this study was to investigate the short-term effects of lower air temperature and cold spells on the risk of hospitalization for MI in Sweden.

Methods

This population-based nationwide study included 120,380 MI cases admitted to hospitals in Sweden during the cold season (October to March) from 2005 to 2019. Daily mean air temperature (1 km2 resolution) was estimated using machine learning, and percentiles of daily temperatures experienced by individuals in the same municipality were used as individual exposure indicators to account for potential geographic adaptation. Cold spells were defined as periods of at least 2 consecutive days with a daily mean temperature below the 10th percentile of the temperature distribution for each municipality. A time-stratified case-crossover design incorporating conditional logistic regression models with distributed lag nonlinear models using lag 0 to 1 (immediate) and 2 to 6 days (delayed) was used to evaluate the short-term effects of lower air temperature and cold spells on total MI, non–ST-segment elevation myocardial infarction (NSTEMI) and ST-segment elevation myocardial infarction (STEMI).

Results

A decrease of 1-U in percentile temperature at a lag of 2 to 6 days was significantly associated with increased risks of total MI, NSTEMI, and STEMI, with ORs of 1.099 (95% CI: 1.057-1.142), 1.110 (95% CI: 1.060-1.164), and 1.076 (95% CI: 1.004-1.153), respectively. Additionally, cold spells at a lag of 2 to 6 days were significantly associated with increased risks for total MI, NSTEMI, and STEMI, with ORs of 1.077 (95% CI: 1.037-1.120), 1.069 (95% CI: 1.020-1.119), and 1.095 (95% CI: 1.023-1.172), respectively. Conversely, lower air temperature and cold spells at a lag of 0 to 1 days were associated with decreased risks for MI.

Conclusions

This nationwide case-crossover study reveals that short-term exposures to lower air temperature and cold spells are associated with an increased risk of hospitalization for MI at lag 2 to 6 days.

References

  • 1. Khraishah H., Alahmad B., Ostergard R.L., et al. "Climate change and cardiovascular disease: implications for global health". Nat Rev Cardiol . 2022;19:12: 798-812.

    CrossrefMedlineGoogle Scholar
  • 2. Ryti N.R., Guo Y., Jaakkola J.J. "Global association of cold spells and adverse health effects: a systematic review and meta-analysis". Environ Health Perspect . 2016;124:1: 12-22.

    CrossrefMedlineGoogle Scholar
  • 3. Collaborators GRF. "Global burden of 87 risk factors in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019". Lancet . 2020;396:10258: 1223-1249.

    CrossrefMedlineGoogle Scholar
  • 4. Gao Y., Huang W., Zhao Q., et al. "Global, regional, and national burden of mortality associated with cold spells during 2000-19: a three-stage modelling study". Lancet Planet Health . 2024;8:2: e108-e116.

    CrossrefMedlineGoogle Scholar
  • 5. Chen X., Luo D.J.G.R.L. "Arctic sea ice decline and continental cold anomalies: upstream and downstream effects of Greenland blocking". Geophysical Research Letters . 2017;44:7: 3411-3419.

    CrossrefGoogle Scholar
  • 6. Cohen J., Jones J., Furtado J.C., Tziperman E.J.O. "Warm arctic, cold continents: a common pattern related to Arctic sea ice melt, snow advance, and extreme winter weather". Oceanography . 2013;26:4: 150-160.

    CrossrefGoogle Scholar
  • 7. Cohen J., Screen J.A., Furtado J.C., et al. "Recent arctic amplification and extreme mid-latitude weather". Nature . 2014;7:9: 627-637.

    Google Scholar
  • 8. Cohen J., Pfeiffer K., Francis J.A. "Warm Arctic episodes linked with increased frequency of extreme winter weather in the United States". Nat Comm . 2018;9:1: 869.

    CrossrefMedlineGoogle Scholar
  • 9. Mori M., Watanabe M., Shiogama H., Inoue J., Kimoto M.J.N.G. "Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades". Nature Geosci . 2014;7:12: 869-873.

    CrossrefGoogle Scholar
  • 10. Cohen J., Agel L., Barlow M., Garfinkel C.I., White I. "Linking arctic variability and change with extreme winter weather in the United States". Science . 2021;373:6559: 1116-1121.

    CrossrefMedlineGoogle Scholar
  • 11. Thygesen K., Alpert J.S., Jaffe A.S., et al. "Fourth universal definition of myocardial infarction (2018)". Eur Heart J . 2019;40:3: 237-269.

    CrossrefMedlineGoogle Scholar
  • 12. Wolf K., Schneider A., Breitner S., et al. "Air temperature and the occurrence of myocardial infarction in Augsburg, Germany". Circulation . 2009;120:9: 735-742.

    CrossrefMedlineGoogle Scholar
  • 13. Thu Dang T.A., Wraith D., Bambrick H., et al. "Short -term effects of temperature on hospital admissions for acute myocardial infarction: a comparison between two neighboring climate zones in Vietnam". Environ Res . 2019;175:167-177.

    CrossrefMedlineGoogle Scholar
  • 14. Sun Z., Chen C., Xu D., Li T. "Effects of ambient temperature on myocardial infarction: A systematic review and meta-analysis". Environ Pollut . 2018;241:1106-1114.

    CrossrefMedlineGoogle Scholar
  • 15. Seah A., Ho A.F.W., Soh S., et al. "Ambient temperature and hospital admissions for non-ST segment elevation myocardial infarction in the tropics". Sci Total Environ . 2022;850:158010.

    CrossrefGoogle Scholar
  • 16. Mohammad M.A., Koul S., Rylance R., et al. "Association of weather with day-to-day incidence of myocardial infarction: a SWEDEHEART nationwide observational study". JAMA Cardiol . 2018;3:11: 1081-1089.

    CrossrefMedlineGoogle Scholar
  • 17. Sohail H., Kollanus V., Tiittanen P., et al. "Low temperature, cold spells, and cardiorespiratory hospital admissions in Helsinki, Finland". Air Quality, Atmosphere and Health . 2022;16:2: 213-220.

    CrossrefGoogle Scholar
  • 18. Claeys M.J., Rajagopalan S., Nawrot T.S., Brook R.D. "Climate and environmental triggers of acute myocardial infarction". Eur Heart J . 2017;38:13: 955-960.

    MedlineGoogle Scholar
  • 19. Vaičiulis V., Jaakkola J.J.K., Radišauskas R., Tamošiūnas A., Lukšienė D., Ryti N.R.I. "Association between winter cold spells and acute myocardial infarction in Lithuania 2000-2015". Sci Rep . 2021;11:1: 17062.

    CrossrefMedlineGoogle Scholar
  • 20. Jiang Y., Yi S., Gao C., et al. "Cold spells and the onset of acute myocardial infarction: a nationwide case-crossover study in 323 Chinese cities". Environ Health Perspect . 2023;131:8: 87016.

    CrossrefGoogle Scholar
  • 21. Jernberg T., Attebring M.F., Hambraeus K., et al. "The Swedish Web-system for enhancement and development of evidence-based care in heart disease evaluated according to recommended therapies (SWEDEHEART)". Heart . 2010;96:20: 1617-1621.

    CrossrefMedlineGoogle Scholar
  • 22. de Bont J., Stafoggia M., Nakstad B., et al. "Associations between ambient temperature and risk of preterm birth in Sweden: a comparison of analytical approaches". Environ Res . 2022;213:113586.

    CrossrefMedlineGoogle Scholar
  • 23. Basagaña X., Michael Y., Lensky I.M., et al. "Low and high ambient temperatures during pregnancy and birth weight among 624,940 singleton term births in Israel (2010-2014): an investigation of potential windows of susceptibility". Environ Health Perspect . 2021;129:10: 107001.

    CrossrefMedlineGoogle Scholar
  • 24. Maclure M. "The case-crossover design: a method for studying transient effects on the risk of acute events". Am J Epidemiol . 1991;133:2: 144-153.

    CrossrefMedlineGoogle Scholar
  • 25. Sun S., Weinberger K.R., Nori-Sarma A., et al. "Ambient heat and risks of emergency department visits among adults in the United States: time stratified case crossover study". BMJ . 2021;375:e065653.

    Google Scholar
  • 26. Belleudi V., Faustini A., Stafoggia M., et al. "Impact of fine and ultrafine particles on emergency hospital admissions for cardiac and respiratory diseases". Epidemiology . 2010;21:3: 414-423.

    CrossrefMedlineGoogle Scholar
  • 27. Breslow N.E., Day N.E., Halvorsen K.T., Prentice R.L., Sabai C. "Estimation of multiple relative risk functions in matched case-control studies". Am J Epidemiol . 1978;108:4: 299-307.

    CrossrefMedlineGoogle Scholar
  • 28. Gasparrini A., Armstrong B., Kenward M.G. "Distributed lag non-linear models". Stat Med . 2010;29:21: 2224-2234.

    CrossrefMedlineGoogle Scholar
  • 29. Bhaskaran K., Hajat S., Haines A., Herrett E., Wilkinson P., Smeeth L. "Effects of ambient temperature on the incidence of myocardial infarction". Heart . 2009;95:21: 1760-1769.

    CrossrefMedlineGoogle Scholar
  • 30. Yamaji K., Kohsaka S., Morimoto T., et al. "Relation of ST-segment elevation myocardial infarction to daily ambient temperature and air pollutant levels in a Japanese nationwide percutaneous coronary intervention registry". Am J Cardiol . 2017;119:6: 872-880.

    CrossrefMedlineGoogle Scholar
  • 31. Didier R., Le Ven F., Ouchiha M., et al. "Analysis of weather exposure 7 days before occurrence of ST-segment elevation myocardial infarction". Arch Cardiovasc Dis . 2020;113:1: 22-30.

    CrossrefMedlineGoogle Scholar
  • 32. Claeys M.J., Coenen S., Colpaert C., et al. "Environmental triggers of acute myocardial infarction: results of a nationwide multiple-factorial population study". Acta Cardiologica . 2015;70:6: 693-701.

    CrossrefMedlineGoogle Scholar
  • 33. Chen K., Breitner S., Wolf K., et al. "Temporal variations in the triggering of myocardial infarction by air temperature in Augsburg, Germany, 1987-2014". Eur Heart J . 2019;40:20: 1600-1608.

    CrossrefMedlineGoogle Scholar
  • 34. Lee S., Lee E., Park M.S., et al. "Short-term effect of temperature on daily emergency visits for acute myocardial infarction with threshold temperatures". PloS One . 2014;9:4: e94070.

    CrossrefGoogle Scholar
  • 35. Danet S., Richard F., Montaye M., et al. "Unhealthy effects of atmospheric temperature and pressure on the occurrence of myocardial infarction and coronary deaths. A 10-year survey: the Lille-World Health Organization MONICA project (Monitoring trends and determinants in cardiovascular disease)". Circulation . 1999;100:1: E1-E7.

    CrossrefMedlineGoogle Scholar
  • 36. Liu C., Yavar Z., Sun Q. "Cardiovascular response to thermoregulatory challenges". Am J Physiol Heart Circ Physiol . 2015;309:11: H1793-H1812.

    CrossrefMedlineGoogle Scholar
  • 37. Mohammadi R., Soori H., Alipour A., Bitaraf E., Khodakarim S. "The impact of ambient temperature on acute myocardial infarction admissions in Tehran, Iran". J Therm Biol . 2018;73:24-31.

    CrossrefMedlineGoogle Scholar
  • 38. Goggins W.B., Chan E.Y., Yang C.Y. "Weather, pollution, and acute myocardial infarction in Hong Kong and Taiwan". Int J Cardiol . 2013;168:1: 243-249.

    CrossrefMedlineGoogle Scholar
  • 39. Charkoudian N., Morrison S.F. "Physiology of thermoregulation: central and peripheral mechanisms". Primer on the Autonomic Nervous System . Elsevier, 2023. 315-321.

    CrossrefGoogle Scholar
  • 40. Aubinière-Robb L., Jeemon P., Hastie C.E., et al. "Blood pressure response to patterns of weather fluctuations and effect on mortality". Hypertension . 2013;62:1: 190-196.

    CrossrefMedlineGoogle Scholar
  • 41. Schneider A., Rückerl R., Breitner S., Wolf K., Peters A. "Thermal control, weather, and aging". Curr Environ Health Rep . 2017;4:1: 21-29.

    CrossrefMedlineGoogle Scholar
  • 42. Stewart S., Keates A.K., Redfern A., McMurray J.J.V. "Seasonal variations in cardiovascular disease". Nat Rev Cardiol . 2017;14:11: 654-664.

    CrossrefMedlineGoogle Scholar
  • 43. Ni W., Breitner S., Nikolaou N., et al. "Effects of short- and medium-term exposures to lower air temperature on 71 novel biomarkers of subclinical inflammation: results from the KORA F4 Study". Environ Sci Technol . 2023;57:33: 12210-12221.

    CrossrefMedlineGoogle Scholar