Skip to main content
Skip main navigationClose Drawer MenuOpen Drawer Menu

Consumer Wearable Health and Fitness Technology in Cardiovascular Medicine: JACC State-of-the-Art ReviewGET ACCESS

JACC State-of-the-Art Review

J Am Coll Cardiol, 82 (3) 245–264
Sections

Central Illustration

Abstract

The use of consumer wearable devices (CWDs) to track health and fitness has rapidly expanded over recent years because of advances in technology. The general population now has the capability to continuously track vital signs, exercise output, and advanced health metrics. Although understanding of basic health metrics may be intuitive (eg, peak heart rate), more complex metrics are derived from proprietary algorithms, differ among device manufacturers, and may not historically be common in clinical practice (eg, peak V˙O2, exercise recovery scores). With the massive expansion of data collected at an individual patient level, careful interpretation is imperative. In this review, we critically analyze common health metrics provided by CWDs, describe common pitfalls in CWD interpretation, provide recommendations for the interpretation of abnormal results, present the utility of CWDs in exercise prescription, examine health disparities and inequities in CWD use and development, and present future directions for research and development.

Highlights

CWDs have proliferated, but the heterogeneous health metrics they generate makes interpretation challenging.

To optimize their value for patient assessment and management, physicians should become familiar with the measurement techniques, accuracy, clinical relevance, and potential pitfalls inherent in these devices as they continue to evolve.

Along with technological development, clearer delineation of the indications for and appropriate use of monitoring technologies is needed to ensure safety and accurate application of the information provided by devices.

References

  • 1. Dagher L., Shi H., Zhao Y., Marrouche N.F. "Wearables in cardiology: here to stay". Heart Rhythm . 2020;17:889-895.

    CrossrefMedlineGoogle Scholar
  • 2. Seneviratne M.G., Connolly S.B., Martin S.S., Parakh K. "Grains of sand to clinical pearls: realizing the potential of wearable data". Am J Med . 2023;136:136-142.

    CrossrefMedlineGoogle Scholar
  • 3. Corday E. "Historical vignette celebrating the 30th anniversary of diagnostic ambulatory electrocardiographic monitoring and data reduction systems". J Am Coll Cardiol . 1991;17:286-292.

    View ArticleGoogle Scholar
  • 4. Del Mar B. "The history of clinical Holter monitoring". Ann Noninvasive Electrocardiol . 2005;10:226-230.

    CrossrefMedlineGoogle Scholar
  • 5. Nelson B.W., Low C.A., Jacobson N., Areán P., Torous J., Allen N.B. "Guidelines for wrist-worn consumer wearable assessment of heart rate in biobehavioral research". NP Digit Med . 2020;3:1-9.

    MedlineGoogle Scholar
  • 6. Svennberg E., Tjong F., Goette A., et al. "How to use digital devices to detect and manage arrhythmias: an EHRA practical guide". Europace . 2022;24:979-1005.

    CrossrefMedlineGoogle Scholar
  • 7. GILLINOV S., ETIWY M., WANG R., et al. "Variable accuracy of wearable heart rate monitors during aerobic exercise". Med Sci Sports Exerc . 2017;49:1697-1703.

    CrossrefMedlineGoogle Scholar
  • 8. Fuller D., Colwell E., Low J., et al. "Reliability and validity of commercially available wearable devices for measuring steps, energy expenditure, and heart rate: systematic review". JMIR Mhealth Uhealth . 2020;8:e18694.

    CrossrefMedlineGoogle Scholar
  • 9. Bent B., Goldstein B.A., Kibbe W.A., Dunn J.P. "Investigating sources of inaccuracy in wearable optical heart rate sensors". NP Digit Med . 2020;3:1-9.

    MedlineGoogle Scholar
  • 10. Miller D.J., Sargent C., Roach G.D. "A validation of six wearable devices for estimating sleep, heart rate and heart rate variability in healthy adults". Sensors (Basel) . 2022;22:6317.

    CrossrefMedlineGoogle Scholar
  • 11. Okutucu S., Karakulak U.N., Aytemir K., Oto A. "Heart rate recovery: a practical clinical indicator of abnormal cardiac autonomic function". Expert Rev Cardiovasc Ther . 2011;9:1417-1430.

    CrossrefMedlineGoogle Scholar
  • 12. Peçanha T., Silva-Júnior N.D., Forjaz C.L. "Heart rate recovery: autonomic determinants, methods of assessment and association with mortality and cardiovascular diseases". Clin Physiol Funct Imaging . 2014;34:327-339.

    CrossrefMedlineGoogle Scholar
  • 13. Imai K., Sato H., Hori M., et al. "Vagally mediated heart rate recovery after exercise is accelerated in athletes but blunted in patients with chronic heart failure". J Am Coll Cardiol . 1994;24:1529-1535.

    View ArticleGoogle Scholar
  • 14. Daanen H.A.M., Lamberts R.P., Kallen V.L., Jin A., Van Meeteren N.L.U. "A systematic review on heart-rate recovery to monitor changes in training status in athletes". Int J Sports Physiol Perform . 2012;7:251-260.

    CrossrefMedlineGoogle Scholar
  • 15. Lamberts R.P., Swart J., Capostagno B., Noakes T.D., Lambert M.I. "Heart rate recovery as a guide to monitor fatigue and predict changes in performance parameters". Scand J Med Sci Sports . 2010;20:449-457.

    CrossrefMedlineGoogle Scholar
  • 16. Carnethon M.R., Sternfeld B., Liu K., et al. "Correlates of heart rate recovery over 20 years in a healthy population sample". Med Sci Sports Exerc . 2012;44:273-279.

    CrossrefMedlineGoogle Scholar
  • 17. Lachman S., Terbraak M.S., Limpens J., et al. "The prognostic value of heart rate recovery in patients with coronary artery disease: a systematic review and meta-analysis". Am Heart J . 2018;199:163-169.

    CrossrefMedlineGoogle Scholar
  • 18. Vicente-Campos D., López A.M., Nuñez M.J., Chicharro J.L. "Heart rate recovery normality data recorded in response to a maximal exercise test in physically active men". Eur J Appl Physiol . 2014;114:1123-1128.

    CrossrefMedlineGoogle Scholar
  • 19. Kleiger R.E., Miller J.P., Bigger J.T., Moss A.J. "Decreased heart rate variability and its association with increased mortality after acute myocardial infarction". Am J Cardiol . 1987;59:256-262.

    CrossrefMedlineGoogle Scholar
  • 20. Nolan J., Batin P.D., Andrews R., et al. "Prospective study of heart rate variability and mortality in chronic heart failure: results of the United Kingdom heart failure evaluation and assessment of risk trial (UK-heart)". Circulation . 1998;98:1510-1516.

    CrossrefMedlineGoogle Scholar
  • 21. Natarajan A., Pantelopoulos A., Emir-Farinas H., Natarajan P. "Heart rate variability with photoplethysmography in 8 million individuals: a cross-sectional study". Lancet Digit Health . 2020;2:e650-e657.

    CrossrefMedlineGoogle Scholar
  • 22. Umetani K., Singer D.H., McCraty R., Atkinson M. "Twenty-four hour time domain heart rate variability and heart rate: relations to age and gender over nine decades". J Am Coll Cardiol . 1998;31:593-601.

    View ArticleGoogle Scholar
  • 23. Castaldo R., Melillo P., Bracale U., Caserta M., Triassi M., Pecchia L. "Acute mental stress assessment via short term HRV analysis in healthy adults: a systematic review with meta-analysis". Biomed Signal Process Control . 2015;18:370-377.

    CrossrefGoogle Scholar
  • 24. Malik M., Bigger J.T., Camm A.J., et al. "Heart rate variability: standards of measurement, physiological interpretation, and clinical use". Eur Heart J . 1996;17:354-381.

    CrossrefMedlineGoogle Scholar
  • 25. Singh N., Moneghetti K.J., Christle J.W., Hadley D., Froelicher V., Plews D. "Heart rate variability: an old metric with new meaning in the era of using mHealth technologies for health and exercise training guidance. Part two: prognosis and training". Arrhythm Electrophysiol Rev . 2018;7:1.

    CrossrefGoogle Scholar
  • 26. Buchheit M. "Monitoring training status with HR measures: do all roads lead to Rome?"Front Physiol . 2014;5:73. https://doi.org/10.3389/fphys.2014.00073.

    CrossrefMedlineGoogle Scholar
  • 27. Baek H.J., Shin J. "Effect of missing inter-beat interval data on heart rate variability analysis using wrist-worn wearables". J Med Syst . 2017;41:147.

    CrossrefMedlineGoogle Scholar
  • 28. "WHOOP. Everything you need to know about heart rate variability (HRV)". https://www.whoop.com/thelocker/heart-rate-variability-hrv/. Accessed April 19, 2023.

    Google Scholar
  • 29. "OURA. Heart rate variability". https://support.ouraring.com/hc/en-us/articles/360025441974-Heart-Rate-Variability#h_01GVP1BPFR8R2G6AYQE394ZVKH. Accessed April 19, 2023.

    Google Scholar
  • 30. Lu G., Yang F., Taylor J.A., Stein J.F. "A comparison of photoplethysmography and ECG recording to analyse heart rate variability in healthy subjects". J Med Eng Technol . 2009;33:634-641.

    CrossrefMedlineGoogle Scholar
  • 31. Bellenger C.R., Miller D.J., Halson S.L., Roach G.D., Sargent C. "Wrist-based photoplethysmography assessment of heart rate and heart rate variability: validation of WHOOP". Sensors (Basel) . 2021;21:3571.

    CrossrefMedlineGoogle Scholar
  • 32. Cao R., Azimi I., Sarhaddi F., et al. "Accuracy assessment of Oura ring nocturnal heart rate and heart rate variability in comparison with electrocardiography in time and frequency domains: comprehensive analysis". J Med Internet Res . 2022;24:e27487.

    CrossrefGoogle Scholar
  • 33. Hernando D., Roca S., Sancho J., Alesanco Á., Bailón R. "Validation of the Apple Watch for heart rate variability measurements during relax and mental stress in healthy subjects". Sensors (Basel) . 2018;18:E2619.

    CrossrefMedlineGoogle Scholar
  • 34. Perez M.V., Mahaffey K.W., Hedlin H., et al. "Large-scale assessment of a smartwatch to identify atrial fibrillation". N Engl J Med . 2019;381:1909-1917.

    CrossrefMedlineGoogle Scholar
  • 35. Lubitz S.A., Faranesh A.Z., Selvaggi C., et al. "Detection of atrial fibrillation in a large population using wearable devices: the Fitbit Heart Study". Circulation . 2022;146:1415-1424.

    CrossrefMedlineGoogle Scholar
  • 36. Guo Y., Wang H., Zhang H., et al. "Mobile photoplethysmographic technology to detect atrial fibrillation". J Am Coll Cardiol . 2019;74:2365-2375.

    View ArticleGoogle Scholar
  • 37. Perino A.C., Gummidipundi S.E., Lee J., et al. "Arrhythmias other than atrial fibrillation in those with an irregular pulse detected with a smartwatch: findings from the Apple Heart Study". Circ Arrhythm Electrophysiol . 2021;14:e010063.

    CrossrefGoogle Scholar
  • 38. Ford C., Xie C.X., Low A., et al. "Comparison of 2 Smart Watch algorithms for detection of atrial fibrillation and the benefit of clinician interpretation: SMART WARS study". J Am Coll Cardiol EP . 2022;8:782-791.

    Google Scholar
  • 39. Mannhart D., Lischer M., Knecht S., et al. "Clinical validation of 5 direct-to-consumer wearable smart devices to detect atrial fibrillation". J Am Coll Cardiol EP . 2023;9:232-242.

    Google Scholar
  • 40. Seshadri D.R., Bittel B., Browsky D., et al. "Accuracy of Apple Watch for detection of atrial fibrillation". Circulation . 2020;141:702-703.

    CrossrefMedlineGoogle Scholar
  • 41. Jaakkola J., Jaakkola S., Lahdenoja O., et al. "Mobile phone detection of atrial fibrillation with mechanocardiography". Circulation . 2018;137:1524-1527.

    CrossrefMedlineGoogle Scholar
  • 42. Gill S., Bunting K.V., Sartini C., et al. "Smartphone detection of atrial fibrillation using photoplethysmography: a systematic review and meta-analysis". Heart . 2022;108:1600-1607.

    CrossrefMedlineGoogle Scholar
  • 43. Lopez Perales C.R., Van Spall H.G.C., Maeda S., et al. "Mobile health applications for the detection of atrial fibrillation: a systematic review". Europace . 2021;23:11-28.

    CrossrefMedlineGoogle Scholar
  • 44. Brandes A., Stavrakis S., Freedman B., et al. "Consumer-led screening for atrial fibrillation: frontier review of the AF-SCREEN international collaboration". Circulation . 2022;146:1461-1474.

    CrossrefMedlineGoogle Scholar
  • 45. Kario K. "Management of hypertension in the digital era: small wearable monitoring devices for remote blood pressure monitoring". Hypertension . 2020;76:640-650.

    CrossrefMedlineGoogle Scholar
  • 46. Sel K., Osman D., Huerta N., Edgar A., Pettigrew R.I., Jafari R. "Continuous cuffless blood pressure monitoring with a wearable ring bioimpedance device". NP Digit Med . 2023;6:59.

    CrossrefMedlineGoogle Scholar
  • 47. Falter M., Scherrenberg M., Driesen K., et al. "Smartwatch-based blood pressure measurement demonstrates insufficient accuracy". Front Cardiovasc Med . 2022;9:958212.

    CrossrefMedlineGoogle Scholar
  • 48. Kuwabara M., Harada K., Hishiki Y., Kario K. "Validation of two watch-type wearable blood pressure monitors according to the ANSI/AAMI/ISO81060-2:2013 guidelines: Omron HEM-6410T-ZM and HEM-6410T-ZL". J Clin Hypertens (Greenwich) . 2019;21:853-858.

    CrossrefMedlineGoogle Scholar
  • 49. Moon J.H., Kang M.-K., Choi C.-E., Min J., Lee H.-Y., Lim S. "Validation of a wearable cuff-less wristwatch-type blood pressure monitoring device". Sci Rep . 2020;10:19015.

    CrossrefGoogle Scholar
  • 50. Whelton P.K., Carey R.M., Aronow W.S., et al. "2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults". J Am Coll Cardiol . 2018;71:e127-e248.

    View ArticleGoogle Scholar
  • 51. Ferguson T., Olds T., Curtis R., et al. "Effectiveness of wearable activity trackers to increase physical activity and improve health: a systematic review of systematic reviews and meta-analyses". Lancet Digit Health . 2022;4:e615-e626.

    CrossrefMedlineGoogle Scholar
  • 52. Piercy K.L., Troiano R.P., Ballard R.M., et al. "The physical activity guidelines for Americans". JAMA . 2018;320:2020-2028.

    CrossrefMedlineGoogle Scholar
  • 53. Kraus W.E., Janz K.F., Powell K.E., et al. "Daily step counts for measuring physical activity exposure and its relation to health". Med Sci Sports Exerc . 2019;51:1206-1212.

    CrossrefMedlineGoogle Scholar
  • 54. Paluch A.E., Bajpai S., Bassett D.R., et al. "Daily steps and all-cause mortality: a meta-analysis of 15 international cohorts". Lancet Public Health . 2022;7:e219-e228.

    CrossrefMedlineGoogle Scholar
  • 55. Teixeira E., Fonseca H., Diniz-Sousa F., et al. "Wearable devices for physical activity and healthcare monitoring in elderly people: a critical review". Geriatrics (Basel) . 2021;6:38.

    CrossrefMedlineGoogle Scholar
  • 56. Jensen M.T., Treskes R.W., Caiani E.G., et al. "ESC working group on e-cardiology position paper: use of commercially available wearable technology for heart rate and activity tracking in primary and secondary cardiovascular prevention—in collaboration with the European Heart Rhythm Association, European Association of Preventive Cardiology, Association of Cardiovascular Nursing and Allied Professionals, Patient Forum, and the Digital Health Committee". Eur Heart J Digit Health . 2021;2:49-59.

    CrossrefMedlineGoogle Scholar
  • 57. Werhahn S.M., Dathe H., Rottmann T., et al. "Designing meaningful outcome parameters using mobile technology: a new mobile application for telemonitoring of patients with heart failure". ESC Heart Fail . 2019;6:516-525.

    CrossrefMedlineGoogle Scholar
  • 58. Bunn J.A., Navalta J.W., Fountaine C.J., Reece J.D. "Current state of commercial wearable technology in physical activity monitoring 2015-2017". Int J Exerc Sci . 2018;11:503-515.

    Google Scholar
  • 59. Toth L.P., Park S., Springer C.M., Feyerabend M.D., Steeves J.A., Bassett D.R. "Video-recorded validation of wearable step counters under free-living conditions". Med Sci Sports Exerc . 2018;50:1315-1322.

    CrossrefMedlineGoogle Scholar
  • 60. Gilgen-Ammann R., Schweizer T., Wyss T. "Accuracy of distance recordings in eight positioning-enabled sport watches: instrument validation study". JMIR Mhealth Uhealth . 2020;8:e17118.

    CrossrefMedlineGoogle Scholar
  • 61. Nielsen R.O., Cederholm P., Buist I., Sørensen H., Lind M., Rasmussen S. "Can GPS be used to detect deleterious progression in training volume among runners?"J Strength Cond Res . 2013;27:6: 1471-1478. https://doi.org/10.1519/JSC.0b013e3182711e3c.

    CrossrefMedlineGoogle Scholar
  • 62. Austin M.A., Wills K.E., Blizzard L., Walters E.H., Wood-Baker R. "Effect of high flow oxygen on mortality in chronic obstructive pulmonary disease patients in prehospital setting: randomised controlled trial". BMJ . 2010;341:c5462.

    CrossrefMedlineGoogle Scholar
  • 63. Petek B.J., Gustus S.K., Wasfy M.M. "Cardiopulmonary exercise testing in athletes: expect the unexpected". Curr Treat Options Cardiovasc Med . 2021;23:49.

    CrossrefMedlineGoogle Scholar
  • 64. Constantini K., Tanner D.A., Gavin T.P., Harms C.A., Stager J.M., Chapman R.F. "Prevalence of exercise-induced arterial hypoxemia in distance runners at sea level". Med Sci Sports Exerc . 2017;49:948-954.

    CrossrefMedlineGoogle Scholar
  • 65. Chen S., Qi J., Fan S., Qiao Z., Yeo J.C., Lim C.T. "Flexible wearable sensors for cardiovascular health monitoring". Adv Healthc Mater . 2021;10:2100116.

    CrossrefGoogle Scholar
  • 66. U.S. Food and Drug Administration. "Pulse oximeters - premarket notification submissions [510(k)s]: guidance for industry and food and drug administration staff". https://www.fda.gov/regulatory-information/search-fda-guidance-documents/pulse-oximeters-premarket-notification-submissions-510ks-guidance-industry-and-food-and-drug. Accessed October 25, 2022.

    Google Scholar
  • 67. Lauterbach C.J., Romano P.A., Greisler L.A., Brindle R.A., Ford K.R., Kuennen M.R. "Accuracy and reliability of commercial wrist-worn pulse oximeter during normobaric hypoxia exposure under resting conditions". Res Q Exerc Sport . 2021;92:549-558.

    CrossrefMedlineGoogle Scholar
  • 68. Pipek L.Z., Nascimento R.F.V., Acencio M.M.P., Teixeira L.R. "Comparison of SpO2 and heart rate values on Apple Watch and conventional commercial oximeters devices in patients with lung disease". Sci Rep . 2021;11:18901.

    CrossrefMedlineGoogle Scholar
  • 69. Jung H., Kim D., Lee W., et al. "Performance evaluation of a wrist-worn reflectance pulse oximeter during sleep". Sleep Health . 2022;8:5: 420-428. https://doi.org/10.1016/j.sleh.2022.04.003.

    CrossrefMedlineGoogle Scholar
  • 70. Hermand E., Coll C., Richalet J.-P., Lhuissier F.J. "Accuracy and reliability of pulse o2 saturation measured by a wrist-worn oximeter". Int J Sports Med . 2021;42:1268-1273.

    CrossrefMedlineGoogle Scholar
  • 71. Schiefer L.M., Treff G., Treff F., et al. "Validity of peripheral oxygen saturation measurements with the Garmin Fēnix(®) 5X Plus wearable device at 4559 m". Sensors (Basel) . 2021;21:19: 6363. https://doi.org/10.3390/s21196363.

    CrossrefMedlineGoogle Scholar
  • 72. Zhang Z., Khatami R. "Can we trust the oxygen saturation measured by consumer smartwatches?"Lancet Respir Med . 2022;10:e47-e48.

    CrossrefMedlineGoogle Scholar
  • 73. Mochizuki K., Shintani R., Mori K., et al. "Importance of respiratory rate for the prediction of clinical deterioration after emergency department discharge: a single-center, case–control study". Acute Med Surg . 2017;4:172-178.

    CrossrefMedlineGoogle Scholar
  • 74. Dias D., Paulo Silva Cunha J. "Wearable health devices-vital sign monitoring, systems and technologies". Sensors (Basel) . 2018;18:8: 2414. https://doi.org/10.3390/s18082414.

    CrossrefMedlineGoogle Scholar
  • 75. Charlton P.H., Birrenkott D.A., Bonnici T., et al. "Breathing rate estimation from the electrocardiogram and photoplethysmogram: a review". IEEE Rev Biomed Eng . 2018;11:2-20.

    CrossrefMedlineGoogle Scholar
  • 76. Cosoli G., Antognoli L., Scalise L. "Indirect estimation of breathing rate through wearable devices. 2022 IEEE International Symposium on Medical Measurements and Applications (MeMeA)". IEEE . 2022. 1-6.

    Google Scholar
  • 77. Berryhill S., Morton C.J., Dean A., et al. "Effect of wearables on sleep in healthy individuals: a randomized crossover trial and validation study". J Clin Sleep Med . 2020;16:775-783.

    CrossrefMedlineGoogle Scholar
  • 78. Natarajan A., Su H.-W., Heneghan C., Blunt L., O’Connor C., Niehaus L. "Measurement of respiratory rate using wearable devices and applications to COVID-19 detection". NP Digit Med . 2021;4:136.

    CrossrefMedlineGoogle Scholar
  • 79. Guazzi M., Adams V., Conraads V., et al. "Clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations". Circulation . 2012;126:2261-2274.

    CrossrefMedlineGoogle Scholar
  • 80. Molina-Garcia P., Notbohm H.L., Schumann M., et al. "Validity of estimating the maximal oxygen consumption by consumer wearables: a systematic review with meta-analysis and expert statement of the INTERLIVE Network". Sports Med . 2022;52:1577-1597.

    CrossrefMedlineGoogle Scholar
  • 81. Lloyd-Jones D.M., Allen N.B., Anderson C.A.M., et al. "Life’s essential 8: updating and enhancing the American Heart Association’s Construct of Cardiovascular Health: A presidential advisory from the American Heart Association". Circulation . 2022;146:e18-e43.

    CrossrefMedlineGoogle Scholar
  • 82. Hirshkowitz M., Whiton K., Albert S.M., et al. "National Sleep Foundation’s sleep time duration recommendations: methodology and results summary". Sleep Health . 2015;1:40-43.

    CrossrefMedlineGoogle Scholar
  • 83. Watson N.F., Badr M.S., Belenky G., et al. "Recommended amount of sleep for a healthy adult: a joint consensus statement of the American Academy of Sleep Medicine and Sleep Research Society". Sleep . 2015;38:843-844.

    MedlineGoogle Scholar
  • 84. Smith M.T., McCrae C.S., Cheung J., et al. "Use of actigraphy for the evaluation of sleep disorders and circadian rhythm sleep-wake disorders: an American Academy of Sleep Medicine clinical practice guideline". J Clin Sleep Med . 2018;14:1231-1237.

    CrossrefMedlineGoogle Scholar
  • 85. de Zambotti M., Cellini N., Menghini L., Sarlo M., Baker F.C. "Sensors capabilities, performance, and use of consumer sleep technology". Sleep Med Clin . 2020;15:1-30.

    CrossrefMedlineGoogle Scholar
  • 86. Chinoy E.D., Cuellar J.A., Huwa K.E., et al. "Performance of seven consumer sleep-tracking devices compared with polysomnography". Sleep . 2020;44:5: zsaa291. https://doi.org/10.1093/sleep/zsaa291.

    CrossrefGoogle Scholar
  • 87. Wulterkens B.M., Fonseca P., Hermans L.W.A., et al. "It is all in the wrist: wearable sleep staging in a clinical population versus reference polysomnography". Nat Sci Sleep . 2021;13:885-897.

    CrossrefMedlineGoogle Scholar
  • 88. Schutte-Rodin S., Deak M.C., Khosla S., et al. "Evaluating consumer and clinical sleep technologies: an American Academy of Sleep Medicine update". J Clin Sleep Med . 2021;17:2275-2282.

    CrossrefMedlineGoogle Scholar
  • 89. Fine J., Branan K.L., Rodriguez A.J., et al. "Sources of inaccuracy in photoplethysmography for continuous cardiovascular monitoring". Biosensors (Basel) . 2021;11:4: 126. https://doi.org/10.3390/bios11040126.

    CrossrefMedlineGoogle Scholar
  • 90. Longmore S.K., Lui G.Y., Naik G., Breen P.P., Jalaludin B., Gargiulo G.D. "A comparison of reflective photoplethysmography for detection of heart rate, blood oxygen saturation, and respiration rate at various anatomical locations". Sensors (Basel) . 2019;19:1874.

    CrossrefMedlineGoogle Scholar
  • 91. Cosoli G., Antognoli L., Veroli V., Scalise L. "Accuracy and precision of wearable devices for real-time monitoring of swimming athletes". Sensors (Basel) . 2022;22:4726.

    CrossrefMedlineGoogle Scholar
  • 92. Hansen D., Abreu A., Ambrosetti M., et al. "Exercise intensity assessment and prescription in cardiovascular rehabilitation and beyond: why and how: a position statement from the Secondary Prevention and Rehabilitation Section of the European Association of Preventive Cardiology". Eur J Prev Cardiol . 2022;29:230-245.

    CrossrefMedlineGoogle Scholar
  • 93. Liguori G. "Medicine ACoS. ACSM's Guidelines for Exercise Testing and Prescription". 11th ed. Lippincott Williams and Wilkins, 2020.

    Google Scholar
  • 94. Rao P., Seshadri D.R., Hsu J.J. "Current and potential applications of wearables in sports cardiology". Curr Treat Options Cardiovasc Med . 2021;23:10: 65. https://doi.org/10.1007/s11936-021-00942-1.

    CrossrefMedlineGoogle Scholar
  • 95. Tikkanen E., Gustafsson S., Ingelsson E. "Associations of fitness, physical activity, strength, and genetic risk with cardiovascular disease: longitudinal analyses in the UK Biobank Study". Circulation . 2018;137:2583-2591.

    CrossrefMedlineGoogle Scholar
  • 96. Al-Alusi M.A., Khurshid S., Wang X., et al. "Trends in consumer wearable devices with cardiac sensors in a primary care cohort". Circ Cardiovasc Qual Outcomes . 2022;15:e008833.

    CrossrefMedlineGoogle Scholar
  • 97. Chandrasekaran R., Katthula V., Moustakas E. "Patterns of use and key predictors for the use of wearable health care devices by us adults: insights from a national survey". J Med Internet Res . 2020;22:e22443.

    CrossrefGoogle Scholar
  • 98. Cho P.J., Yi J., Ho E., et al. "Demographic imbalances resulting from the bring-your-own-device study design". JMIR Mhealth Uhealth . 2022;10:e29510.

    CrossrefGoogle Scholar
  • 99. Shi C., Goodall M., Dumville J., et al. "The accuracy of pulse oximetry in measuring oxygen saturation by levels of skin pigmentation: a systematic review and meta-analysis". BMC Med . 2022;20:267.

    CrossrefMedlineGoogle Scholar
  • 100. Kyriacou P.A., Charlton P.H., Al-Halawani R., Shelley K.H. "Inaccuracy of pulse oximetry with dark skin pigmentation: clinical implications and need for improvement". Br J Anaesth . 2023;130:1: e33-e36. https://doi.org/10.1016/j.bja.2022.03.011.

    CrossrefMedlineGoogle Scholar
  • 101. Fawzy A., Wu T.D., Wang K., et al. "Racial and ethnic discrepancy in pulse oximetry and delayed identification of treatment eligibility among patients with COVID-19". JAMA Intern Med . 2022;182:730-738.

    CrossrefMedlineGoogle Scholar
  • 102. Kusumoto F.M., Schoenfeld M.H., Barrett C., et al. "2018 ACC/AHA/HRS guideline on the evaluation and management of patients with bradycardia and cardiac conduction delay: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines, and the Heart Rhythm Society". J Am Coll Cardiol . 2019;74:7: 932-987.

    View ArticleGoogle Scholar
  • 103. Page R.L., Joglar J.A., Caldwell M.A., et al. "2015 ACC/AHA/HRS guideline for the management of adult patients with supraventricular tachycardia: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society". J Am Coll Cardiol . 2016;67:13: e27-e115.

    View ArticleGoogle Scholar
  • 104. Al-Khatib S.M., Stevenson W.G., Ackerman M.J., et al. "2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society". J Am Coll Cardiol . 2018;72:14: e91-e220.

    View ArticleGoogle Scholar
  • 105. January C.T., Wann L.S., Alpert J.S., et al. "2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society". J Am Coll Cardiol . 2014;64:21: e1-e76.

    View ArticleGoogle Scholar
  • 106. January C.T., Wann L.S., Calkins H., et al. "2019 AHA/ACC/HRS focused update of the 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society". J Am Coll Cardiol . 2019;74:1: 104-132.

    View ArticleGoogle Scholar
  • 107. Charlton P.H., Villarroel M., Salguiero F. "Waveform analysis to estimate respiratory rate. secondary analysis of electronic health records". Secondary Analysis of Electronic Health Records . Cham: Springer International Publishing, 2016. 377-390.

    CrossrefGoogle Scholar
  • 108. Tandon A., Nguyen H.H., Avula S., et al. "Wearable biosensors in congenital heart disease". JACC: Adv . 2023;2:100267.

    View ArticleGoogle Scholar
  • 109. Leclercq C., Witt H., Hindricks G., et al. "Wearables, telemedicine, and artificial intelligence in arrhythmias and heart failure: Proceedings of the European Society of Cardiology Cardiovascular Round Table". Europace . 2022;24:1372-1383.

    CrossrefMedlineGoogle Scholar
  • 110. Beavers D.L., Chung E.H. "Wearables in sports cardiology". Clin Sports Med . 2022;41:405-423.

    CrossrefMedlineGoogle Scholar
  • 111. Manninger M., Zweiker D., Svennberg E., et al. "Current perspectives on wearable rhythm recordings for clinical decision-making: the wEHRAbles 2 survey". Europace . 2021;23:1106-1113.

    CrossrefMedlineGoogle Scholar
  • 112. Boriani G., Svennberg E., Guerra F., et al. "Reimbursement practices for use of digital devices in atrial fibrillation and other arrhythmias: a European Heart Rhythm Association survey". Europace . 2022;24:1834-1843.

    CrossrefMedlineGoogle Scholar