Skip to main content
Skip main navigationClose Drawer MenuOpen Drawer Menu

Concealed Cardiomyopathy in Autopsy-Inconclusive Cases of Sudden Cardiac Death and Implications for FamiliesGET ACCESS

Original Investigation

J Am Coll Cardiol, 80 (22) 2057–2068
Sections

Central Illustartion

Abstract

Background

Genetic testing following sudden cardiac death (SCD) is currently guided by autopsy findings, despite the inherent challenges of autopsy examination and mounting evidence that malignant arrhythmia may occur before structural changes in inherited cardiomyopathy, so-called “concealed cardiomyopathy” (CCM).

Objectives

The authors sought to identify the spectrum of genes implicated in autopsy-inconclusive SCD and describe the impact of identifying CCM on the ongoing care of SCD families.

Methods

Using a standardized framework for adjudication, autopsy-inconclusive SCD cases were identified as having a structurally normal heart or subdiagnostic findings of uncertain significance on autopsy. Genetic variants were classified for pathogenicity using the American College of Medical Genetics and Genomics guidelines. Family follow-up was performed where possible.

Results

Twenty disease-causing variants were identified among 91 autopsy-inconclusive SCD cases (mean age 25.4 ± 10.7 years) with a similar rate regardless of the presence or absence of subdiagnostic findings (25.5% vs 18.2%; P = 0.398). Cardiomyopathy-associated genes harbored 70% of clinically actionable variants and were overrepresented in cases with subdiagnostic structural changes at autopsy (79% vs 21%; P = 0.038). Six of the 20 disease-causing variants identified were in genes implicated in arrhythmogenic cardiomyopathy. Nearly two-thirds of genotype-positive relatives had an observable phenotype either at initial assessment or subsequent follow-up, and 27 genotype-negative first-degree relatives were released from ongoing screening.

Conclusions

Phenotype-directed genetic testing following SCD risks under recognition of CCM. Comprehensive evaluation of the decedent should include assessment of genes implicated in cardiomyopathy in addition to primary arrhythmias to improve diagnosis of CCM and optimize care for families.

  • 1. Junttila M.J., Holmstrom L., Pylkas K., et al. "Primary myocardial fibrosis as an alternative phenotype pathway of inherited cardiac structural disorders". Circulation 2018;137:2716-2726.

    CrossrefMedlineGoogle Scholar
  • 2. Bagnall R.D., Weintraub R.G., Ingles J., et al. "A prospective study of sudden cardiac death among children and young adults". N Engl J Med 2016;374:2441-2452.

    CrossrefMedlineGoogle Scholar
  • 3. Stiles M.K., Wilde A.A.M., Abrams D.J., et al. "2020 APHRS/HRS expert consensus statement on the investigation of decedents with sudden unexplained death and patients with sudden cardiac arrest, and of their families". Heart Rhythm 2021;18:1: e1-e50. https://doi.org/10.1016/j.hrthm.2020.10.010.

    CrossrefMedlineGoogle Scholar
  • 4. Priori S.G., Blomström-Lundqvist C., Mazzanti A., et al. "2015 ESC guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: the Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the ESC". Eur Heart J 2015;36:2793-2867.

    CrossrefMedlineGoogle Scholar
  • 5. Fellmann F., van El C.G., Charron P., et al. "European recommendations integrating genetic testing into multidisciplinary management of sudden cardiac death". Eur J Hum Genet 2019;27:1763-1773.

    CrossrefMedlineGoogle Scholar
  • 6. Wilde A.A.M., Semsarian C., Márquez M.F., et al. "European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) expert consensus statement on the state of genetic testing for cardiac diseases". Europace 2022;24:8: 1307-1367. https://doi.org/10.1093/europace/euac030.

    CrossrefMedlineGoogle Scholar
  • 7. Behr E.R., Scrocco C., Wilde A.A.M., et al. "Investigation on Sudden Unexpected Death in the Young (SUDY) in Europe: results of the European Heart Rhythm Association Survey". Europace 2022;24:2: 331-339. https://doi.org/10.1093/europace/euab176.

    CrossrefMedlineGoogle Scholar
  • 8. van den Heuvel L.M., Do J., Yeates L., et al. "Global approaches to cardiogenetic evaluation after sudden cardiac death in the young: A survey among health care professionals". Heart Rhythm 2021;18:1637-1644.

    CrossrefMedlineGoogle Scholar
  • 9. Basso C., Aguilera B., Banner J., et al. "Guidelines for autopsy investigation of sudden cardiac death: 2017 update from the Association for European Cardiovascular Pathology". Virchows Arch 2017;471:691-705.

    CrossrefMedlineGoogle Scholar
  • 10. Schoppen Z.J., Balmert L.C., White S., et al. "Prevalence of abnormal heart weight after sudden death in people younger than 40 years of age". J Am Heart Assoc 2020;9:e015699.

    CrossrefMedlineGoogle Scholar
  • 11. Papadakis M., Raju H., Behr E.R., et al. "Sudden cardiac death with autopsy findings of uncertain significance: potential for erroneous interpretation". Circ Arrhythm Electrophysiol 2013;6:588-596.

    CrossrefMedlineGoogle Scholar
  • 12. Semsarian C., Ingles J., Wilde A.A. "Sudden cardiac death in the young: the molecular autopsy and a practical approach to surviving relatives". Eur Heart J 2015;36:1290-1296.

    CrossrefMedlineGoogle Scholar
  • 13. Neves R., Tester D.J., Simpson M.A., Behr E.R., Ackerman M.J., Giudicessi J.R. "Exome sequencing highlights a potential role for concealed cardiomyopathies in youthful sudden cardiac death". Circ Genom Precis Med 2022;15:1: e003497 https://doi.org/10.1161/CIRCGEN.121.003497.

    CrossrefMedlineGoogle Scholar
  • 14. Lahrouchi N., Raju H., Lodder E.M., et al. "Utility of post-mortem genetic testing in cases of sudden arrhythmic death syndrome". J Am Coll Cardiol 2017;69:2134-2145.

    View ArticleGoogle Scholar
  • 15. Webster G., Puckelwartz M.J., Pesce L.L., et al. "Genomic autopsy of sudden deaths in young individuals". JAMA Cardiol 2021;6:11: 1247-1256. https://doi.org/10.1001/jamacardio.2021.2789.

    CrossrefMedlineGoogle Scholar
  • 16. Isbister J.C., Nowak N., Butters A., et al. ""Concealed cardiomyopathy" as a cause of previously unexplained sudden cardiac arrest". Int J Cardiol 2021;324:96-101.

    CrossrefMedlineGoogle Scholar
  • 17. Zipes D.P., Wellens H.J. "Sudden cardiac death". Circulation 1998;98:2334-2351.

    CrossrefMedlineGoogle Scholar
  • 18. Raju H., Parsons S., Thompson T.N., et al. "Insights into sudden cardiac death: exploring the potential relevance of non-diagnostic autopsy findings". Eur Heart J 2019;40:831-838.

    CrossrefMedlineGoogle Scholar
  • 19. Wingren C.J., Ottosson A. "Postmortem heart weight modelled using piecewise linear regression in 27,645 medicolegal autopsy cases". Forensic Sci Int 2015;252:157-162.

    CrossrefMedlineGoogle Scholar
  • 20. Richards S., Aziz N., Bale S., et al. "Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the ACMG and the Association for Molecular Pathology". Genet Med 2015;17:405-424.

    CrossrefMedlineGoogle Scholar
  • 21. Kelly M.A., Caleshu C., Morales A., et al. "Adaptation and validation of the ACMG/AMP variant classification framework for MYH7-associated inherited cardiomyopathies: recommendations by ClinGen's Inherited Cardiomyopathy Expert Panel". Genet Med 2018;20:351-359.

    CrossrefMedlineGoogle Scholar
  • 22. Riggs E.R., Andersen E.F., Cherry A.M., et al. "Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen)". Genet Med 2020;22:245-257.

    CrossrefMedlineGoogle Scholar
  • 23. Morales A., Kinnamon D.D., Jordan E., et al. "Variant interpretation for dilated cardiomyopathy: refinement of the ACMG/ClinGen guidelines for the DCM Precision Medicine Study". Circ Genom Precis Med 2020;13:e002480.

    CrossrefMedlineGoogle Scholar
  • 24. Lahrouchi N., Raju H., Lodder E.M., et al. "The yield of postmortem genetic testing in sudden death cases with structural findings at autopsy". Eur J Hum Genet 2020;28:17-22.

    CrossrefMedlineGoogle Scholar
  • 25. Grondin S., Davies B., Cadrin-Tourigny J., et al. "Importance of genetic testing in unexplained cardiac arrest". Eur Heart J 2022;43:32: 3071-3081. https://doi.org/10.1093/eurheartj/ehac145.

    CrossrefMedlineGoogle Scholar
  • 26. Ommen S.R., Mital S., Burke M.A., et al. "2020 AHA/ACC guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines". J Am Coll Cardiol 2020;76:25: e159-e240. https://doi.org/10.1016/j.jacc.2020.08.04.

    View ArticleGoogle Scholar
  • 27. Calkins H., Corrado D., Marcus F. "Risk stratification in arrhythmogenic right ventricular cardiomyopathy". Circulation 2017;136:2068-2082.

    CrossrefMedlineGoogle Scholar
  • 28. Miles C., Finocchiaro G., Papadakis M., et al. "Sudden death and left ventricular involvement in arrhythmogenic cardiomyopathy". Circulation 2019;139:1786-1797.

    CrossrefMedlineGoogle Scholar
  • 29. Sen-Chowdhry S., Syrris P., Ward D., Asimaki A., Sevdalis E., McKenna W.J. "Clinical and genetic characterization of families with arrhythmogenic right ventricular dysplasia/cardiomyopathy provides novel insights into patterns of disease expression". Circulation 2007;115:1710-1720.

    CrossrefMedlineGoogle Scholar
  • 30. Corrado D., Perazzolo Marra M., Zorzi A., et al. "Diagnosis of arrhythmogenic cardiomyopathy: the Padua criteria". Int J Cardiol 2020;319:106-114.

    CrossrefMedlineGoogle Scholar
  • 31. Augusto J.B., Eiros R., Nakou E., et al. "Dilated cardiomyopathy and arrhythmogenic left ventricular cardiomyopathy: a comprehensive genotype-imaging phenotype study". Eur Heart J Cardiovasc Imaging 2020;21:326-336.

    MedlineGoogle Scholar
  • 32. Frustaci A., Priori S.G., Pieroni M., et al. "Cardiac histological substrate in patients with clinical phenotype of Brugada syndrome". Circulation 2005;112:3680-3687.

    CrossrefMedlineGoogle Scholar
  • 33. Miles C., Asimaki A., Ster I.C., et al. "Biventricular myocardial fibrosis and sudden death in patients with Brugada syndrome". J Am Coll Cardiol 2021;78:1511-1521.

    View ArticleGoogle Scholar
  • 34. Zareba W., Moss A.J., Locati E.H., et al. "Modulating effects of age and gender on the clinical course of long QT syndrome by genotype". J Am Coll Cardiol 2003;42:103-109.

    View ArticleGoogle Scholar
  • 35. Akhtar M.M., Lorenzini M., Cicerchia M., et al. "Clinical phenotypes and prognosis of dilated cardiomyopathy caused by truncating variants in the TTN gene". Circ Heart Fail 2020;13:e006832.

    CrossrefMedlineGoogle Scholar
  • 36. Lakdawala N.K., Olivotto I., Day S.M., et al. "Associations between female sex, sarcomere variants, and clinical outcomes in hypertrophic cardiomyopathy". Circ Genom Precis Med 2021;14:e003062.

    CrossrefGoogle Scholar
  • 37. Visser M., van der Heijden J.F., van der Smagt J.J., et al. "Long-term outcome of patients initially diagnosed with idiopathic ventricular fibrillation: a descriptive study". Circ Arrhythm Electrophysiol 2016;9:e004258.

    CrossrefGoogle Scholar
  • 38. Musunuru K., Hershberger R.E., Day S.M., et al. "Genetic testing for inherited cardiovascular diseases: a scientific statement from the AHA". Circ Genom Precis Med 2020;13:e000067.

    CrossrefGoogle Scholar
  • 39. Ingles J., Bagnall R.D., Yeates L., et al. "Concealed arrhythmogenic right ventricular cardiomyopathy in sudden unexplained cardiac death events". Circ Genom Precis Med 2018;11:e002355.

    CrossrefGoogle Scholar
  • 40. Burns C., Ingles J., Davis A.M., et al. "Clinical and genetic features of Australian families with long QT syndrome: a registry-based study". J Arrhythm 2016;32:456-461.

    CrossrefMedlineGoogle Scholar
  • 41. Bagnall R.D., Molloy L.K., Kalman J.M., Semsarian C. "Exome sequencing identifies a mutation in the ACTN2 gene in a family with idiopathic ventricular fibrillation, left ventricular noncompaction, and sudden death". BMC Med Genet 2014;15:99.

    CrossrefMedlineGoogle Scholar
  • 42. Singer E.S., Ross S.B., Skinner J.R., et al. "Characterization of clinically relevant copy-number variants from exomes of patients with inherited heart disease and unexplained sudden cardiac death". Genet Med 2021;23:86-93.

    CrossrefMedlineGoogle Scholar
  • 43. Gray B., Bagnall R.D., Lam L., et al. "A novel heterozygous mutation in cardiac calsequestrin causes autosomal dominant catecholaminergic polymorphic ventricular tachycardia". Heart Rhythm 2016;13:1652-1660.

    CrossrefMedlineGoogle Scholar